Function:
(defun ident-aidentp (ident gcc) (declare (xargs :guard (and (identp ident) (booleanp gcc)))) (declare (ignorable ident)) (let ((__function__ 'ident-aidentp)) (declare (ignorable __function__)) (ascii-ident-stringp (ident->unwrap ident) gcc)))
Theorem:
(defthm booleanp-of-ident-aidentp (b* ((fty::result (ident-aidentp ident gcc))) (booleanp fty::result)) :rule-classes :rewrite)
Theorem:
(defthm ident-aidentp-of-ident-fix-ident (equal (ident-aidentp (ident-fix ident) gcc) (ident-aidentp ident gcc)))
Theorem:
(defthm ident-aidentp-ident-equiv-congruence-on-ident (implies (ident-equiv ident ident-equiv) (equal (ident-aidentp ident gcc) (ident-aidentp ident-equiv gcc))) :rule-classes :congruence)
Theorem:
(defthm ident-aidentp-of-bool-fix-gcc (equal (ident-aidentp ident (bool-fix gcc)) (ident-aidentp ident gcc)))
Theorem:
(defthm ident-aidentp-iff-congruence-on-gcc (implies (iff gcc gcc-equiv) (equal (ident-aidentp ident gcc) (ident-aidentp ident gcc-equiv))) :rule-classes :congruence)