Fixing function for stmt-value structures.
(stmt-value-fix x) → new-x
Function:
(defun stmt-value-fix$inline (x) (declare (xargs :guard (stmt-valuep x))) (let ((__function__ 'stmt-value-fix)) (declare (ignorable __function__)) (mbe :logic (case (stmt-value-kind x) (:none (cons :none (list))) (:return (b* ((value? (value-option-fix (std::da-nth 0 (cdr x))))) (cons :return (list value?))))) :exec x)))
Theorem:
(defthm stmt-valuep-of-stmt-value-fix (b* ((new-x (stmt-value-fix$inline x))) (stmt-valuep new-x)) :rule-classes :rewrite)
Theorem:
(defthm stmt-value-fix-when-stmt-valuep (implies (stmt-valuep x) (equal (stmt-value-fix x) x)))
Function:
(defun stmt-value-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (stmt-valuep acl2::x) (stmt-valuep acl2::y)))) (equal (stmt-value-fix acl2::x) (stmt-value-fix acl2::y)))
Theorem:
(defthm stmt-value-equiv-is-an-equivalence (and (booleanp (stmt-value-equiv x y)) (stmt-value-equiv x x) (implies (stmt-value-equiv x y) (stmt-value-equiv y x)) (implies (and (stmt-value-equiv x y) (stmt-value-equiv y z)) (stmt-value-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm stmt-value-equiv-implies-equal-stmt-value-fix-1 (implies (stmt-value-equiv acl2::x x-equiv) (equal (stmt-value-fix acl2::x) (stmt-value-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm stmt-value-fix-under-stmt-value-equiv (stmt-value-equiv (stmt-value-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-stmt-value-fix-1-forward-to-stmt-value-equiv (implies (equal (stmt-value-fix acl2::x) acl2::y) (stmt-value-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-stmt-value-fix-2-forward-to-stmt-value-equiv (implies (equal acl2::x (stmt-value-fix acl2::y)) (stmt-value-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm stmt-value-equiv-of-stmt-value-fix-1-forward (implies (stmt-value-equiv (stmt-value-fix acl2::x) acl2::y) (stmt-value-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm stmt-value-equiv-of-stmt-value-fix-2-forward (implies (stmt-value-equiv acl2::x (stmt-value-fix acl2::y)) (stmt-value-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm stmt-value-kind$inline-of-stmt-value-fix-x (equal (stmt-value-kind$inline (stmt-value-fix x)) (stmt-value-kind$inline x)))
Theorem:
(defthm stmt-value-kind$inline-stmt-value-equiv-congruence-on-x (implies (stmt-value-equiv x x-equiv) (equal (stmt-value-kind$inline x) (stmt-value-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-stmt-value-fix (consp (stmt-value-fix x)) :rule-classes :type-prescription)