(decl-list-rename c$::decl-list subst) → fty::result
Theorem:
(defthm decl-list-rename-type-prescription (true-listp (decl-list-rename c$::decl-list subst)) :rule-classes :type-prescription)
Theorem:
(defthm decl-list-rename-when-atom (implies (atom c$::decl-list) (equal (decl-list-rename c$::decl-list subst) nil)))
Theorem:
(defthm decl-list-rename-of-cons (equal (decl-list-rename (cons decl c$::decl-list) subst) (cons (decl-rename decl subst) (decl-list-rename c$::decl-list subst))))
Theorem:
(defthm decl-list-rename-of-append (equal (decl-list-rename (append acl2::x acl2::y) subst) (append (decl-list-rename acl2::x subst) (decl-list-rename acl2::y subst))))
Theorem:
(defthm consp-of-decl-list-rename (equal (consp (decl-list-rename c$::decl-list subst)) (consp c$::decl-list)))
Theorem:
(defthm len-of-decl-list-rename (equal (len (decl-list-rename c$::decl-list subst)) (len c$::decl-list)))
Theorem:
(defthm nth-of-decl-list-rename (equal (nth acl2::n (decl-list-rename c$::decl-list subst)) (if (< (nfix acl2::n) (len c$::decl-list)) (decl-rename (nth acl2::n c$::decl-list) subst) nil)))
Theorem:
(defthm decl-list-rename-of-revappend (equal (decl-list-rename (revappend acl2::x acl2::y) subst) (revappend (decl-list-rename acl2::x subst) (decl-list-rename acl2::y subst))))
Theorem:
(defthm decl-list-rename-of-reverse (equal (decl-list-rename (reverse c$::decl-list) subst) (reverse (decl-list-rename c$::decl-list subst))))