Abstract a
(abs-program-declaration tree) → decl
Function:
(defun abs-program-declaration (tree) (declare (xargs :guard (abnf::treep tree))) (let ((__function__ 'abs-program-declaration)) (declare (ignorable __function__)) (b* (((okf (abnf::tree-list-tuple5 sub)) (abnf::check-tree-nonleaf-5 tree "program-declaration")) ((okf tree) (abnf::check-tree-list-1 sub.1st)) ((okf &) (abnf::check-tree-schars tree "program")) ((okf tree) (abnf::check-tree-list-1 sub.2nd)) ((okf id) (abs-program-id tree)) ((okf tree) (abnf::check-tree-list-1 sub.3rd)) ((okf &) (abnf::check-tree-ichars tree "{")) ((okf items) (abs-*-program-item sub.4th)) ((okf tree) (abnf::check-tree-list-1 sub.5th)) ((okf &) (abnf::check-tree-ichars tree "}"))) (make-programdecl :id id :items items))))
Theorem:
(defthm programdecl-resultp-of-abs-program-declaration (b* ((decl (abs-program-declaration tree))) (programdecl-resultp decl)) :rule-classes :rewrite)
Theorem:
(defthm abs-program-declaration-of-tree-fix-tree (equal (abs-program-declaration (abnf::tree-fix tree)) (abs-program-declaration tree)))
Theorem:
(defthm abs-program-declaration-tree-equiv-congruence-on-tree (implies (abnf::tree-equiv tree tree-equiv) (equal (abs-program-declaration tree) (abs-program-declaration tree-equiv))) :rule-classes :congruence)