Abstract a
(abs-program-id tree) → progid
Function:
(defun abs-program-id (tree) (declare (xargs :guard (abnf::treep tree))) (let ((__function__ 'abs-program-id)) (declare (ignorable __function__)) (b* (((okf (abnf::tree-list-tuple3 sub)) (abnf::check-tree-nonleaf-3 tree "program-id")) ((okf tree) (abnf::check-tree-list-1 sub.1st)) ((okf name) (abs-identifier tree)) ((okf tree) (abnf::check-tree-list-1 sub.2nd)) ((okf &) (abnf::check-tree-schars tree ".")) ((okf tree) (abnf::check-tree-list-1 sub.3rd)) ((okf network) (abs-identifier tree))) (make-programid :name name :network network))))
Theorem:
(defthm programid-resultp-of-abs-program-id (b* ((progid (abs-program-id tree))) (programid-resultp progid)) :rule-classes :rewrite)
Theorem:
(defthm abs-program-id-of-tree-fix-tree (equal (abs-program-id (abnf::tree-fix tree)) (abs-program-id tree)))
Theorem:
(defthm abs-program-id-tree-equiv-congruence-on-tree (implies (abnf::tree-equiv tree tree-equiv) (equal (abs-program-id tree) (abs-program-id tree-equiv))) :rule-classes :congruence)