Leo less-than operation.
(op-lt left right) → result
Function:
(defun op-lt (left right) (declare (xargs :guard (and (valuep left) (valuep right)))) (let ((__function__ 'op-lt)) (declare (ignorable __function__)) (cond ((and (value-case left :u8) (value-case right :u8)) (value-bool (< (value-u8->get left) (value-u8->get right)))) ((and (value-case left :u16) (value-case right :u16)) (value-bool (< (value-u16->get left) (value-u16->get right)))) ((and (value-case left :u32) (value-case right :u32)) (value-bool (< (value-u32->get left) (value-u32->get right)))) ((and (value-case left :u64) (value-case right :u64)) (value-bool (< (value-u64->get left) (value-u64->get right)))) ((and (value-case left :u128) (value-case right :u128)) (value-bool (< (value-u128->get left) (value-u128->get right)))) ((and (value-case left :i8) (value-case right :i8)) (value-bool (< (value-i8->get left) (value-i8->get right)))) ((and (value-case left :i16) (value-case right :i16)) (value-bool (< (value-i16->get left) (value-i16->get right)))) ((and (value-case left :i32) (value-case right :i32)) (value-bool (< (value-i32->get left) (value-i32->get right)))) ((and (value-case left :i64) (value-case right :i64)) (value-bool (< (value-i64->get left) (value-i64->get right)))) ((and (value-case left :i128) (value-case right :i128)) (value-bool (< (value-i128->get left) (value-i128->get right)))) ((and (value-case left :field) (value-case right :field)) (value-bool (< (value-field->get left) (value-field->get right)))) ((and (value-case left :scalar) (value-case right :scalar)) (value-bool (< (value-scalar->get left) (value-scalar->get right)))) (t (reserrf (list :op-lt (value-fix left) (value-fix right)))))))
Theorem:
(defthm value-resultp-of-op-lt (b* ((result (op-lt left right))) (value-resultp result)) :rule-classes :rewrite)
Theorem:
(defthm op-lt-of-value-fix-left (equal (op-lt (value-fix left) right) (op-lt left right)))
Theorem:
(defthm op-lt-value-equiv-congruence-on-left (implies (value-equiv left left-equiv) (equal (op-lt left right) (op-lt left-equiv right))) :rule-classes :congruence)
Theorem:
(defthm op-lt-of-value-fix-right (equal (op-lt left (value-fix right)) (op-lt left right)))
Theorem:
(defthm op-lt-value-equiv-congruence-on-right (implies (value-equiv right right-equiv) (equal (op-lt left right) (op-lt left right-equiv))) :rule-classes :congruence)