
Using Theorem Proving with
Algorithmic Techniques for

Large-scale System Verification
Ph.D. Oral Proposal

Sandip Ray

sandip@cs.utexas.edu

Department of Computer Sciences

The University of Texas at Austin

PhD Oral Proposal – p.1



Motivation

Design of modern computing systems is error-prone.

Simulation and testing cannot catch all the bugs.
Bugs discovered after manufacture can be extremely
expensive.
Can we mathematically prove that systems behave
correctly?

McCarthy’s Dream (1962) [2]:
“Instead of debugging a program, one should
prove that it meets its specification, and this proof
should be checked by a computer program.”

PhD Oral Proposal – p.2



Formal Verification

Formal Verification is a practical approach to realizing
McCarthy’s dream.

Model the executions of the system under interest as
formal objects in some logic.

Prove the desired properties as formal theorems about
the models in the logic.

Use a (trusted) computer program to assist in the
proof generation process.

PhD Oral Proposal – p.3



Formal Verification: Approaches

Deductive Verification (theorem proving)

Logic used is expressive but undecidable.
A “theorem prover” is responsible for finding and
checking proofs.

A user “guides” the theorem prover in proof
search.

Algorithmic Verification (Model Checking)

The logic used is decidable.
Checking properties in the logic is automatic (at
least in principle).

Our Goal: Combine the two approaches “effectively” for
verifying large systems.

PhD Oral Proposal – p.4



Why Combine Two Techniques?

Neither technique is effective as is for verification of large
systems!

Deductive Verification:

Requires substantial interaction from a
“knowledgable” user.
The proof might change considerably as the design
evolves!

Algorithmic Verification:

Involves an intelligent but exhaustive search of the
states of the underlying system.

For large systems, these techniques suffer
from state explosion.

PhD Oral Proposal – p.5



Approach to Combination

Use Theorem proving to verify the correlation between
the “concrete system” and an “abstract model”.

The abstract system should have much fewer states.

Apply algorithmic verification techniques to verify
such abstract models.

Use the correlation proof and the algorithmic proof to
conclude that the concrete system has the desired
properties.

PhD Oral Proposal – p.6



Basic Requirements

Theorem proving aspect of the work must focus on
lessening the manual effort.

Automatic (possibly heuristic) tools need to work
with the theorem prover to help in verification of
correlation.

Algorithmic techniques should be carefully used so that
state explosion can be avoided.

The integration of the two techniques should be sound
and efficient.

PhD Oral Proposal – p.7



Domains of Interest

Our principal focus is on verification of implementations of
multiprocessor system models:

Synchronization protocols.

Pipelined architectures.

Cache coherence.

PhD Oral Proposal – p.8



ACL2

ACL2 is the theorem proving system and logic that we use
for our work.

ACL2 is a programming language, logic, and a theorem
prover for the logic.

It is relatively easy to code up decision procedures
and tools in the ACL2 language, and possible to
verify them.

ACL2 has been successfully used for verification of
large-scale system models.

We later discuss why we need to integrate “external” tools
with ACL2 and how we propose to do it.

PhD Oral Proposal – p.9



Modeling Systems

Computing systems are traditionally modeled
operationally in ACL2.

“The meaning of a program is defined by its effect on
the state vector.” (McCarthy, 1962) [2]

A system model in ACL2 is defined by three functions:

A state function step that takes a “current state” �

and “current input”

�

and returns the “next state” �
�

.
A predicate init? that recognizes if a state is an
“initial state”.
A function label that maps a state � to a collection
of “observations” at �.

PhD Oral Proposal – p.10



Framework: Well-founded Refinements

Introduced by Sumners [4] and follows from work by
Manolios, Namjoshi and Sumners [1] on WEBs.

Relates executions of two system models impl and
spec at different levels of abstraction.

Define a function rep that maps a state of impl to a
state of spec.
Show that for every “step” of impl, spec takes a
“step” or “stutters”.
Show that the observations are preserved by rep,
i.e.,, a state of impl and the corresponding spec
state have “equivalent” observations.
Use an argument based on well-foundedness to
show that “stuttering” is finite.

PhD Oral Proposal – p.11



Examining Well-founded Refinements

We used the framework to verify several distributed
protocols, including a (simplified) Bakery Algorithm.

Joint work with Rob Sumners.

Our Observations:

We needed to extend the framework to incorporate
the notion of “fair executions”.

The “fairness constraints” have been subsequently
extended and improved by Sumners [5].

Most of the human effort is expended in the process
of defining and proving “invariants”.

Similar conclusion has been reached by others
(independently) in verifying computing models.

PhD Oral Proposal – p.12



Inductive Invariants

Inductive invariants are predicates that are true along every
“step” of the system model.

(init? s) � (inv s), and

(inv s) � (inv (step s i))

For example, assume that a component of a state is a
counter that is incremented at each “step” starting from 0.
Then, an inductive invariant is:

The value stored in the “counter variable”, is a natural
number.

PhD Oral Proposal – p.13



Invariants and Refinement

In well-founded refinement, we need to show that when
impl takes a “step”, spec either takes a “step” or “stutters”.

(rep (impl s i)) � (rep s)

(spec (rep s) (pick s i))

If inv had been shown to be an inductive invariant, then we
can assume (inv s) for this proof!

Determine a predicate inv such that:

1. inv is an inductive invariant.
2. Assuming inv you can prove the conditions of

well-founded refinement above.

PhD Oral Proposal – p.14



An Invariant Prover

We have implemented a tool with the ACL2 system to
generate and prove inductive invariants.

Joint work with Rob Sumners.

Basic Idea:

Start with a predicate suff that is strong enough to
prove the conditions of well-founded refinement.
“Strengthen” suff using a refinement procedure to
get an inductive invariant inv.

Procedure uses term rewriting, and lightweight
model checking.
If it cannot strengthen suff to inv it produces a
“counterexample”.

PhD Oral Proposal – p.15



Invariant Strengthening Example

PC Impl Program PC Spec Program
1 j=init; 1 j=init+3;

2 j++;

3 j++;

4 j++;

An invariant we might like is: The value of j in the impl
system in a state where PC is 4 is equal to (init + 2).

But this is not an inductive invariant!

Informally, to prove the property as an invariant for the
states where PC is 4, we need to know something about the
states for which PC is 3.

PhD Oral Proposal – p.16



Example: Continued

We strengthen the invariant by a simple rewriting technique:

(PC = 4) implies (j = init + 2) simplifies to:

(PC = 3) implies (j = init + 1).

The “simplification” is obtained using ACL2’s simplification
engine along with built-in rewrite rules verified by the
theorem prover.

Note: Our tool critically depends on the availability of
libraries of rewrite rules to help in the simplification
process.

PhD Oral Proposal – p.17



Applications of Invariant Prover

We have modeled a fairly complex multiprocessor memory
system with caches and directories.

We can prove well-founded refinement between the
memory system and a simple spec.

The invariant prover is used to generate invariants for
this proof.

Experience shows that the prover is useful.

Observations:

Invariant prover critically depends on built-in libraries
of “good” rewrite rules.
The system model we have used is at protocol level.

PhD Oral Proposal – p.18



Decision Procedures

Decision procedures (like model checking) implement
some (decidable) logic.

Logic of the theorem prover (ACL2) might not be
compatible with the logic of the decision procedure.

The semantics of LTL model checking is specified
in terms of infinite sequence of states.
If sequences are modeled as lists, it is easy to
prove in ACL2 that all sequences are finite.

How do we then use decision procedures on abstract
models and compose them with the refinement proof
relating concrete and abstract models?

Note: Ruben Gamboa faced similar problems trying to
verify square root algorithms in ACL2.

PhD Oral Proposal – p.19



Verifying Decision Procedures

Decision procedures are programs too!

You can model them in ACL2, and prove properties
about them.
We refer to such theorems about decision
procedures as characterizing theorems.

They tell you exactly what can be derived in ACL2
if a decision procedure returns true or false on
some verification problem.

The characterizing theorems sometimes turn out to
be different from the traditional semantics of the
decision procedure, in order to be expressible to the
theorem prover.

PhD Oral Proposal – p.20



Verifying Decision Procedures: Feasibility

Is verification of decision procedures to generate
characterizing theorems feasible?

We have verified two decision procedures:

1. A (simple) compositional model checking procedure.
2. A (simple) implementation of Generalized Symbolic

Traejctory Evaluation, using strong satisfiability.

Observations:

The approach is feasible, though non-trivial.
Characterizing theorems and their proofs can be
very different from traditional ones.
But, the proof is “once-off” per decision procedure to
be integrated.

PhD Oral Proposal – p.21



Verifying Compositional Model Checking

Joint work with John Matthews and Mark Tuttle.

Uses a composition of two (trivial) model checking
reductions.

1. Conjunctive reduction
2. Cone of Influence reduction

The model checking logic used is LTL.

Observations:

The reductions are really trivial, but their verification
turned out to be complicated.

PhD Oral Proposal – p.22



Notes on Our Proof

The chief road-block was in specifying the semantics of LTL!

We could not specify the semantics in terms of infinite
paths.

We used eventually periodic paths, that is, infinite paths
composed of a finite “prefix” followed by a finite “cycle”.

Known Result: If there is an infinite path violating an
LTL property, then there also exists an eventually
periodic path violating the property.

All proofs had to be cast into this framework. Proofs
turned out to be different and sometimes complicated.

Full details in our paper [3].

PhD Oral Proposal – p.23



Verification of GSTE

Joint work with Warren A. Hunt (Jr).

GSTE is an efficient lattice-based automatic verification
technique.

Properties are specified not as formulas but in terms of
assertion graphs.

Several notions of correctness exist in the GSTE
literature, namely strong, terminal, and fair
satisfiabilities.

Fair satisfiability can express any �-regular property.

We verified an algorithm that implements strong
satisfiability which is normally used for verification of
safety properties.

PhD Oral Proposal – p.24



Notes on Our Proof

Our implementation is not terribly efficient, but we
anticipate that a more efficient implementation will be
verified along the same lines.

More efficient implementations have been done in
ACL2 itself by Erik Reeber.

Proof involves mechanically verifying results from
lattices and partial order relations.

To our knowledge, this is the first mechanical verification
of GSTE in a general-purpose theorem prover.

We are on the way to verify a slightly more
sophisticated implementation that satisfies terminal
satisfiability.

PhD Oral Proposal – p.25



Characterizing Theorems

Compositional Model Checking:

The compositional algorithm decomposes a
verification problem to a collection of “smaller”
verification problems. (In this context, a verification
problem is a pair

�

�

� �

.)
Theorem (proved by ACL2): The original verification
problem returns true if and only if every verification
problem produced by the compositional algorithm
returns true.
Truth of a verification problem is defined according to
model checking semantics for LTL (in terms of
eventually periodic paths).

PhD Oral Proposal – p.26



Using Characterizing Theorems

Given specific and

�

, we use the theorem to enable us to
decompose the verification problem.

Such verification has actually been done on relatively
simple system models.

ACL2 has used the characterizing theorem to
deduce that it can decompose the problem into a
number of simpler problems.
Each of the simpler problems could now be verified
by a model checker. (Some issues there, we will
discuss them later.)
Soundness of the combination guaranteed by the
soundness of ACL2 and characterizing theorem.

PhD Oral Proposal – p.27



External Tools

Do we need to implement every decision procedure
efficiently in ACL2?

We did NOT implement an efficient model checker, but
used an external model checker (Cadence SMV).

ACL2 does not have a mechanism of hooking an
external tool.

We had to hack into ACL2 to get the hook.
Guarantee from composition: If the external tool
satisfies the characterizing theorem, then the
verificaion using the composite structure is correct.

Better approaches for integrating external tools with
ACL2 are explored by Erik Reeber.

PhD Oral Proposal – p.28



Summary of Proposals

Use theorem proving to verify correlation between
executions of a “concrete system” and an “abstract
model”.

Abstract system must be “simpler” than the concrete
system under consideration.
Design automatic tools to lessen manual effort in this
task.

Design a framework to integrate algorithmic procedures
to verify properties of the abstract system.

The integration should be sound and efficient.

Use the composite framework to verify models of
multiprocessor systems of practical complexity.

PhD Oral Proposal – p.29



Our Accomplishments

Examined and extended well-founded refinements.

Verified several distributed synchronization
protocols, including a (simplified) Bakery Algorithm.
Built a tool for checking and strengthening invariants
in this framework.

Used the framework and our tool to verify some
properties of a complex multiprocessor cache system.

Explored the feasibility of integrating decision
procedures with ACL2, using characterizing theorems.

Verified a compositional model checking algorithm
and an algorithm for GSTE.

(Roughly) integrated external procedures (Cadence
SMV) with ACL2.

PhD Oral Proposal – p.30



Proposals

1. Verification of RTL level designs.

Such designs are much “lower level” than the models
we verified.
We are looking to building better libraries for
reasoning about such systems.

2. Verification of Pipelined systems.

We are working on an approach to verify pipelined
machines using well-founded refinements.

We are using quantified first-order predicates to
simplify the definition of invariants.

3. Building and integrating more efficient decision
procedures and external tools.

PhD Oral Proposal – p.31



References

[1] P. Manolios, K. Namjoshi, and R. Sumners. Linking Model-

checking and Theorem-proving with Well-founded Bisimu-

lations. In N. Halbwacha and D. Peled, editors, Computer-

Aided Verification (CAV), volume 1633 of LNCS, pages

369–379, 1999.

[2] J. McCarthy. Towards a Mathematical Science of Com-

putation. In Proceedings of the Information Processing

Congress, volume 62, pages 21–28, Munich, West Ger-

many, August 1962. North-Holland.

[3] S. Ray, J. Matthews, and M. Tuttle. Certifying Composi-

tional Model Checking Algorithms in ACL2. In W. A. Hunt

(Jr.), M. Kaufmann, and J S. Moore, editors, Fourth Inter-

national Workshop on ACL2 Theorem Prover and Its Appli-

cations, Boulder, CO, July 2003.

[4] R. Sumners. An Incremental Stuttering Refinement Proof

of a Concurrent Program in ACL2. In Second International

Workshop on ACL2 Theorem Prover and Its Applications,

Austin, TX, October 2000.

[5] R. Sumners. Fair Environment Assumptions in ACL2. In

W. A. Hunt (Jr.), M. Kaufmann, and J S. Moore, editors,

Fourth International Workshop on ACL2 Theorem Prover

and Its Applications, Boulder, CO, July 2003.

31-1


	Motivation
	Formal Verification
	Formal Verification: Approaches
	Why Combine Two Techniques?
	Approach to Combination
	Basic Requirements
	Domains of Interest
	ACL2
	Modeling Systems
	Framework: Well-founded Refinements
	Examining Well-founded Refinements
	Inductive Invariants
	Invariants and Refinement
	An Invariant Prover
	Invariant Strengthening Example
	Example: Continued
	Applications of Invariant Prover
	Decision Procedures
	Verifying Decision Procedures
	Verifying Decision Procedures: Feasibility
	Verifying Compositional Model Checking
	Notes on Our Proof
	Verification of GSTE
	Notes on Our Proof
	Characterizing Theorems
	Using Characterizing Theorems
	External Tools
	Summary of Proposals
	Our Accomplishments
	Proposals

