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Introduction

• DE is a Hardware Description Language
– Simple FSM semantics

• Embedded in ACL2
• Predecessor: DUAL-EVAL

– FM9001 proof
– No combinational loops
– Primitives are modules
– No types



Motivation

• Need to get design into ACL2
– Advantages to embedded approach:

• Closer to actual design
• Can verify optimization and verification tools
• Can write and verify generation functions

• Need Finite Decision Procedures
– Type system

• Explore HDL design
– Simple semantics
– May put specification in the code



Example 1: XNOR
‘(xnor2

(ins (x 2) (y 2))

(outs (q 2))

(wires (xq 2))

(occs

(xor-occ (xq) 

(bufn 2) 

((xor 2 x y)))

(xnor-occ (q) 

(bufn 2) 

((not 2 xq))))

• No one would build this 
module in DE; it is too simple. 

• Declare widths of inputs, 
outputs, and wires to be 2.

• An occurrence is an 
instantiation of a module.  Bufn 
plays the roll of an assignment. 

• Inputs are ACL2 expressions 
using a small set of primitives.

• No combinational loops in the 
occurrence list.



Modeling a Synopsis MUX
• Synopsis has a built-in      (2^n:1) 

* w mux module that is 
sometimes used in TRIPS

• We implement an ACL2 version 
named s-m-n-w.

• We add this function to our list of 
allowed primitives.

• Lambda functions need the 
parameters and return the state as 
well as the outputs.

• We implement the module with 
parameterized bit widths.

'(any-mux-n-w

(params n w)

(outs (q w))

(ins (sel n) (x (expt 2 w)))

(occs 

(occ (q)

((lambda (n w sel x)

(list

'nil 

(s-m-n-w n w sel x)))

n w)

(sel x)))))



Example 2: A simple ALU
'(simple-ALU

(params w)

(outs (q w))

(ins (op 2) (x w) (y w))

(wires (m-in (* (expt 2 2) w)))

(occs

(op0 ((m-in 0  (1- w))) (bufn w) ((or w x y)))

(op1 ((m-in w  (1- (* 2 w)))) (bufn w) ((and w x y)))

(op2 ((m-in (* 2 w) (1- (* 3 w)))) (bufn w) ((xor w x y)))

(op3 ((m-in (* 3 w) (1- (* 4 w)))) (bufn w) 

((not (and w x y))))

(alu (q)

(any-mux-n-w 2 w)

(op m-in)))))



Example 2 Comments

• Using parameters to generalize a little bit
– Need actual parameters to synthesize

• Using a lot of buffers and ACL2 functions
– This is a lot more similar to the TRIPS style 

than using only module instantiations



An n bit register
‘(reg-n

(type primitive)

(params n)

(ins (x n))

(outs (q n))

(sts st)

(st-decls (st n))

(occs

(st (q)

((lambda (st x)

(list x st)))

(st x))))

• Declared to be a primitive: allowed 
to use state like a wire, but not 
allowed to instantiate modules

• State st is declared twice.  The first 
declaration means it takes state, the 
second means that it is finite and a 
bit-vector.



Example 3: Accumulator

• Here we use the ALU 
and the register to build 
an accumulator

• The state is only 
declared once, and it has 
no type.

• State is passed 
automatically to register, 
by virtue of its instance 
name.

• The “loop” here is not 
combinational

‘(accumulator

(params n)

(ins (op 2) (x n))

(outs (q n))

(sts st)

(wires (y n))

(occs

(st (y)

(reg-n n)

(q))

(alu (q)

(simple-ALU n)

(op x y))))



Example 4: Memory Block
‘(memory-block

(type primitive)

(params n w)

(ins (wr w)

(wr-en 1)

(addr n))

(outs (q w))

(sts st)

(occs  

(st (q)

((lambda (n w st wr wr-en addr)

(list (mem-b-ns n w st wr wr-en)

(mem-b-q n w st addr)) n w)

(st wr wr-en addr))))

• Here we intend to model a large 
block of memory.  

• State is not implemented as a bit 
vector, and may not be finite.

• ACL2 functions mem-b-ns and 
mem-b-q are added as next state 
and output primitives.



The SE and DE functions

• The semantics of DE are implemented as a single-pass 
output evaluator, SE, and a dual-pass state evaluator, DE.

• These functions take in the following arguments: flg, 
params, ins, sts, env, netlist.

• Example call and output:
> (se ‘flg ‘simple-ALU ‘(2)

‘((bv-const 2 0) (bv-const 2 1)) (bv-const 2 2)) 

‘() (simple-ALU-net))

((t t))



Static Checking

• syntaxp, given fn and netlist checks the following 
of fn and its components:
– Is an alist with outs and occs
– Each occ has the proper format.
– Declarations in outs, ins, sts, and st-decls properly 

formatted.
– No duplicate names
– Names in sts occur in the occs entry (once)
– All wires that are referenced are declared
– Etc.



Static Checking (continued)

• Syntax-with-params, given fn, netlist, and 
params checks the following:
– Every wire has constant width
– Instance wire widths correspond with module 

declarations
– Each bit of each wire is defined exactly once
– A wire is completely defined before any part of it is 

used
• We also have well-formed-inputs and well-

formed-finite-state functions.



Verification and Tool Flow

Verilog

DE ACL2 Model

Abstract ACL2 Model

ACL2 Specification

C Model Test CodeDesign & Test:

Get into ACL2:

Simplify:

Prove:



Verification Example -- Verilog

module dt_lsq_dsn_valid_blocks 

(valid_block_mask, youngest, oldest, empty);

output [7:0] valid_block_mask;

input [2:0]  youngest;

input [2:0]  oldest;

input        empty;

wire [7:0]   youngest_set_up, oldest_set_down;

wire         youngest_lt_oldest;    

… … …
assign valid_block_mask = 

empty ?              8'd0 :

youngest_lt_oldest ? youngest_set_up | oldest_set_down :

youngest_set_up & oldest_set_down;

endmodule // dt_lsq_dsn



Verification Example -- DE
(add-module 

(quote (|dt_lsq_dsn_valid_blocks|

(OUTS (|valid_block_mask| 8))

(INS (|youngest| 3)

(|oldest| 3)

(|empty| 1))

(WIRES (|youngest_set_up| 8)

(|oldest_set_down| 8)

(|youngest_lt_oldest| 1))

(OCCS

… … …
(ASSIGN_3 ((|valid_block_mask| 0 7))

(BUFN 8)

((BV-IF (G |empty| 0 0)

(BV-CONST 8 0)

(BV-IF (G |youngest_lt_oldest| 0 7)

(BV-OR 8 (G |youngest_set_up| 0 7)

(G |oldest_set_down| 0 7))

(BV-AND 8 (G |youngest_set_up| 0 7)

(G |oldest_set_down| 0 7))))))))))



Verification Example – ACL2

(defun |acl2-dt_lsq_valid_blocks| (|youngest| |oldest| |empty|)

(let* (… … …
(|valid_block_mask| 

(BV-IF (G |empty| 0 0)

(BV-CONST 8 0)

(BV-IF (G |youngest_lt_oldest| 0 7)

(BV-OR 8 (G |youngest_set_up| 0 7)

(G |oldest_set_down| 0 7))

(BV-AND 8 (G |youngest_set_up| 0 7)

(G |oldest_set_down| 0 7))))))

(list |valid_block_mask|)))



Verification Example – Abstract ACL2

(defun make_valid_mask (n youngest oldest ans)

(cond ((zp n) ans)

((car (bv-eq 3 youngest oldest)) 

(bv-or 8 ans (bv-lshift 8 3 (bv-const 8 1) oldest)))

(t 

(make_valid_mask 

(1- n) youngest (increment 3 oldest) 

(bv-or 

8 ans (bv-lshift 8 3 (bv-const 8 1) oldest)))))) 

(defun valid_blocks (youngest oldest empty)

(if (car empty)

(bv-const 8 0)

(make_valid_mask 8 youngest oldest (bv-const 8 0))))



Verification Example (theorems)
(defthm dt_lsq_dsn_valid_blocks-se-rewrite

(implies (|dt_lsq_dsn_valid_blocks-&| netlist) 

(equal 

(se flg '|dt_lsq_dsn_valid_blocks| params

ins st env netlist)

(|acl2-dt_lsq_valid_blocks|

(get-value flg ins env)

(get-value flg (cdr ins) env)

(get-value flg (cddr ins) env))))

:hints (("Goal" :in-theory 

(e/d (|dt_lsq_dsn_valid_blocks-EXPAND|

|dt_lsq_dsn_valid_blocks-&|) 

()))))

(thm (car (bv-eq 8 (valid_blocks youngest oldest empty)

(car (|acl2-dt_lsq_valid_blocks| 

youngest oldest empty))))

:hints (("Goal" :sat nil)))



Current System Summary

• Current System:
– DE semantics and static checkers
– Verilog to DE compiler
– First-pass rewriting book
– SAT decision procedure integrated with (my) ACL2

• (Near-term) Plans:
– Verilog to low-level ACL2 compiler
– Improved rewriting book
– SAT-based Equivalence Checker
– Proof of larger TRIPS components



Issues
• Combining the finite theorems with ACL2 is still a 

bit cumbersome.
• Is Embedded the right approach?
• Is SAT in the right place?
• Can we make DE more compact?
• Should we put more power in the parameters?

– Could we then eliminate the need for defining ACL2 
functions for each Synopsis primitive?

• Are we handling state right?
• Is the type system too limiting?



Conclusion

• DE is a simple HDL embedded in ACL2.
• We can implement complex hardware in it.
• We can quickly verify small hardware in it.
• We hope to verify complex hardware using 

a hierarchical approach.
• It now has a strong parameterized type 

system.


