
Integrating SAT Solvers with
ACL2 (part 3)

Erik Reeber

2/2/05

Review of Part 1
• SAT Solvers

– Find satisfying instances of Boolean variables
in conjunctive normal form

– Used as an alternative to BDDs in fully
automated hardware verification tools

• Decidable Fragment of ACL2
– list structures and unrollable functions
– detection algorithm
– Can express hardware invariants

Review of Part 2
• Conversion to BC-CNF

– Create a clause list that is usatisfiable only if
the original property is valid

– Create variables using bceq literals
– Remove functions other than car, cdr, and

consp (and one bceq literal)

• Γ
– Find relevant components of each variable
– Requires one pass through the clause list

Substituting BCEQ for BCEQ
– 0: (bceq 4 (f (g x)))

• Create a variable for (g x)
– 1: (and (bceq 4 (f 5)) (equal 5 (g x)))

• Now substitute bceq for equal
– 2: (and (bceq 4 (f 5)) (bceq 5 (g x)))

• If an instance satisfies 1, then it satisfies 2.
– Therefore if no instance satisfies 2 then no instance

satisfies 1 (soundness)

• In decidable fragment bceq should be enough

Justifying Γ
• Too large of a Γ leads to inefficiency

– Create clauses we don’t need

• Too small of a Γ leads to spurious counter
examples

Motivating Example

…

(bceq (car 7) ‘t)

(bceq 6 7)

(bceq 5 6)

…

(bceq 2 (car 5))

(not 2)

• (car 6) is in Γ by propagation
– If not, a spurious counter example

would be generated

• If the (car 7) clause were
deleted, (car 6) will be in Γ, but
actually be irrelevant

• If the (car 5) clause were
deleted, (car 6) will not be in Γ
and it will be irrelevant

Overview

• Destructor Elimination

• Removing iff

• Results

• Conclusion

• General Mechanism For Integrating
External Tools (Discussion)

Example
(defun not-list (n x)

(if (zp n)

nil

(cons (not (car x)) (not-list (1- n) (cdr x)))))

(defun n-bleq (n x y)

(if (zp n)

t

(if (iff (car x) (car y))

(n-bleq (1- n) (cdr x) (cdr y))

nil)))

;; The (not (not x)) == x

(thm (n-bleq 2 (not-list 2 (not-list 2 x)) x)

:hints (("Goal" :sat nil)))

Destructor Elimination (cont)

• Number all the needed consp and non-nil
expressions
– These are the new variable numbers

• Add clauses from list structure axioms
– (car x) → (consp x)

– (cdr x) → (consp x)

– (consp x) → x

Example
1: ((nil nil nil 1) ((nil nil nil 2) nil nil nil) nil nil)

=> no list structure axioms

2: (nil nil nil 3)

=> none

3: ((nil nil nil 4) ((nil nil nil 5) 6 nil) 7 nil)

=> 4->6, 5->6, and 6->7 (6->empty->7: we continue the
chain until we hit a number or run out of things for
which to look)

4: ((nil nil nil 8) ((nil nil nil 9) 10 nil) 11 nil)

=> 8->10, 9->10, 10->11

5: (nil nil nil 12)

=> none

6: (nil nil nil 13)

=> none

Destructor Elimination (cont)

• Create new clauses from each old clause
– For non-bceq literals, sub in the new variable for the

component expression

– Turn bceq clauses into multiple iff clauses, guided by
the first argument

Example

Γ1=(nil (nil nil 4 5) 6 7) and

Γ2=((nil nil nil 8) (nil nil 9 10) 11 12)

Γ3=((nil nil nil 13) nil nil nil 14)

(nand
…
(or (bceq 1 2) 3)

=>
(nand

…
(or (iff 4 9) 14)

(or (iff 5 10) 14)

(or (iff 6 11) 14)

(or (iff 7 12) 14))

• Not based on previous example

Example

• In our actual example:
– The (bceq (cddr 4) ‘nil) was removed

– No bceq expressions were split

• Result shown on next slide

Example
(nand

(or (not 4) 7)

(or (not 5) 6)

(or (not 6) 7)

(or (not 8) 11)

(or (not 9) 10)

(or (not 10) 11)

(not 3)

11

(iff 8 (not 1))

10

(iff 9 (not 2))

7

(iff 4 (not 8)

6

(iff 5 (not 9))

(or (iff 12 1) (not 4))

(or (iff 12 (not 1)) 4)

(or (iff 12 2) (not 5))

(or (iff 12 (not 2)) 5)

(or (iff 3 't) (not 12) (not 13))

(or (iff 3 'nil) (not 12) 13)

(or (iff 3 'nil) 12)))

Removing iff

• We now remove iff
– (iff x y) => (and (or (not x) y) (or x (not y)))

– (iff x ‘t)=> x

– (iff x ‘nil=>(not x)

• Once we remove the iff expressions we are
in CNF.

• Final example shown on next slide

Example
(nand

(or (not 4) 7)

(or (not 5) 6)

(or (not 6) 7)

(or (not 8) 11)

(or (not 9) 10)

(or (not 10) 11)

(not 3)

11

(or (not 8) (not 1))

(or 8 1)

10

(or (not 9) (not 2))

(or 9 2)

7

(or (not 4) (not 8))

(or 4 8)

6

(or (not 5) (not 9))

(or 5 9)

(or (not 12) 1 (not 4))

(or 12 (not 1) (not 4))

(or (not 12) (not 1) 4)

(or 12 1 4)

(or (not 12) 2 (not 5))

(or 12 (not 2) (not 5))

(or (not 12) (not 2) 5)

(or 12 2 5)

(or 3 (not 12) (not 13))

(or (not 3) (not 12) 13)

(or (not 3) 12)

Optimizations
• During BC-CNF conversion: Hash tables used to

avoid creating variables for the same expression.

• During Destructor Elimination: Singleton bceq
clauses can be deleted and treated as rewrite rules
– Not entirely implemented

– Use virtual pointers in Γ construction

– Once showed significant performance improvement,
but may no longer be necessary.

Performance

• Opening up functions can lead to an explosion

(thm (iff (not (unary-or 1000 a))

(unary-and 1000 (not-list 1000 a)))

:hints (("Goal" :sat nil)))

– Takes 168.61 s to convert to CNF (3003 variables),

– zChaff took 0.14s to prove.

• The rest of the conversion process is linear

• SAT solving can be exponential in the number of
variables, but in practice is not.

Results---Conversion Decomposition

11.88s34204.05s1.45s2.72s0.82s100 Digit Inv8

136.13s5495089.54s0.90s6.24s37.31s64x6 Add S7

4.13s63301.0s0.15s0.31s2.45s32x4 Add S6

23.64s293200.05s0.47s2.70s19.08s64x7 Shift Zs5

3.27s74630.01s0.13s0.43s2.54s32x6 Shift Zs4

56.02s400153.75s0.10s1.37s0.53s200 bit adder3

2.38s5092.22s0.06s0.04s0.01s32 bit adder2

0.17s810.01s0.05s0.00s0.00s4 bit adder1

TotalVarsSolvingOuputD-ElimBC-CNFExampleN

Results---Performance Comparison

11.88s4.53s****100 Digit Dec Inv8

136.13s507.33s****64x6 Added Shift7

4.13s3.55s****32x4 Added Shift6

23.64759.79****64x7 Shift Zeros5

3.27s4.66s106.54s32x6 Shift Zeros4

56.02s6.91s****200 Adder Assoc3

2.38s0.55s****32 Adder Assoc2

0.17s0.02s166.72s4 Adder Assoc1

SATBDDACL2ExampleN

Results---Lines of Code Comparison

36

44

44

34

34

21

21

21

Model

428044100 Digit Dec Inv8

4775864x6 Added Shift7

4715832x4 Added Shift6

6655364x7 Shift Zeros5

6605332x6 Shift Zeros4

420217200 Adder Assoc3

4421732 Adder Assoc2

425174 Adder Assoc1

SATBDDACL2ExampleN

Conclusion
• SAT solving is a useful technique for verifying hardware

• The strengths of SAT solving contrast those of ACL2
– Best for small finite theorems

– Completely automatic

– Produces counter examples

• We’ve developed a new ACL2 hint which uses an external
SAT solver

• This ACL2 hint operates (best) on a well-defined decidable
subset of ACL2.

• This subset is large enough to encompass interesting
hardware properties (and useful hardware theorems)

External Tool Mechanism
• Desires

– High performance
– Powerful
– No editing ACL2 source code
– Keep track of dependencies

• Needs of my conversion algorithm
– Hash-tables
– Arrays
– Getprop
– Ev-fncall
– I/O & syscall

Proposal
• New hint, :external

• Define a (program-mode) function tool-fn
– (tool-fn expr state arg0 arg1 … argk) (mv erp state val)

• Use the function in a hint
– (defthm rev-n-100

(bleq (rev-n 100 (rev-n 100 x)) x)

:hints ((“Goal” :external (sat arg0 arg1 … argk)))))

• If erp is t, then fail and print error message

• If erp is nil, then replace goal expr with val
– Tool promises that ifval is a theorem, then so is expr

Proposal (continued)

• Print out external tool dependencies
– Direct or indirect dependencies?

• Declare dependencies when including
books:
– (include-book “rev-n-100.lisp” :tools (sat))

Thoughts on Proposal

• State modification OK
– Allows I/O modification to state

– Untouchables protects internal state

• Can call getprop and trans-eval

• Use ACL2 arrays

• Implement hash-tables

