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LabVIEW

• Graphical, concurrent, data-flow programming language.

• Pioneered notion of “Virtual Instruments” as software 
renditions of solutions whose realization was classically in 
specialized, tediously developed, and expensively 
manufactured hardware.

• Extremely popular in mission critical testing and 
automation.

• Can now target any 32-bit microprocessor, and is 
increasingly popular as a development environment for 
embedded systems.



LabVIEW: Syntax

• Development of a VI consists of designing, in 
tandem, a !ont panel (user interface) and block 
diagram (algorithm) for the function of focus.
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LabVIEW: Semantics
• Data-flow determines order of execution.

• Block Diagrams (algorithms) consist of functions, which are 
represented as icons, wires that connect these icons, and 
structures that control execution logic.  

• Data flows from one function to the next.  So, in a restricted 
subset of the language, LabVIEW is purely applicative - it is 
all just functional composition!

• Each function on a diagram does not execute until all of its 
input terminals have data available for processing.

• Thus, data-flow is rooted in 0-ary functions (constants and 
user input boxes), and a data-flow partial order may be 
discerned recursively with 0-ary functions as a base

• Note to self: This is a good time to show an example!



LabVIEW + A.R.
• Due to its placement as a key development environment for 

mission critical and embedded systems, LabVIEW is an especially 
ripe candidate for which a strong application of formal methods 
and automated reasoning may be very fruitful.

• Began working on this problem in June, 2005.  Starting initially 
with Otter, I proceeded by axiomatizing G diagrams by hand in a 
Hilbert-style fashion, and producing proofs of simple structural 
theorems as a first proof of concept.

• Shifted focus to ACL2 to take advantage of its potent brew of 
decision procedures, operational semantics, and induction 
heuristics, with the intent of mechanically translating G diagrams 
into extensionally equivalent, fu$y executable, Applicative Common 
Lisp forms.

• Two possibilities: Compilation VS. Interpretation.  Compilation 
more natural for proving theorems about diagrams (machine model 
need not be mapped!).



Method of Attack:
Theorem Blocks

• Decided to introduce a new meta-linguistic node block into LabVIEW language, the 
Theorem Block.

• Theorem blocks are sub-diagrams with any number of input terminals and no output 
terminals, except a single terminal which may connect only to other theorem blocks 
(proof planning).

• Input terminals connect to wires on the object diagram.  The theorem block then houses 
asserted constraints upon the relationships between the values of these wires.  

• Thus, proposed theorems may be asserted upon the diagram in the same language as the 
object diagram itself, giving assertions an executable counterpart within LabVIEW, and 
allowing the same debugging and visualization tools to be used for tracing the flow of 
data through assertions interactively!  

• If theorem can not be proven at compile time, theorem block is compiled into 
executable as a run-time assertion.

• In this way, Theorem Blocks may be both object and meta theoretic constructs.



G Compiler & Method/ACL2
• In order to prove the contents of theorem blocks in ACL2, we need 

both a method for translating the high-level G data-structure into a 
manipulatable acyclic graph, as well as a method for translating an 
acyclic graph representing a G diagram into a form acceptable to 
ACL2.

• Translating G diagram into a manipulatable graph is handled by the 
new G compiler, written in G!

• G compiler gives us a massive, human unreadable representation of a 
G diagram as a set of nodes together with their terminal wirings.  We 
call this IGML.

• Nothing else given in G Compiler output.  Data-flow ordering, node 
rankings, and all node connectivity must be discovered by a new tool: 
Method/ACL2. 



Method/ACL2
• A [Theorem Block Annotated G] diagram => ACL2 compiler.

• Written itself in ACL2!  (Very elegant possibilities here).

• Provides the means to convert G diagrams into an extensionally equivalent ACL2 form, 
then translate assertions specified on Theorem Blocks upon such diagrams into ACL2 
proof searches and theorem definitions (the latter if the former is found, or SKIP-
PROOF is used).

• Provides induction heuristics for translating theorem block assertions made upon shift 
registers into ACL2 proof searches.

• Will allow rewriting strategies, lemma usage, and hints to be specified on G Theorem 
Blocks as attributes wired to the Proof Data sub-node, and uses such data when 
guiding ACL2 towards a proof.  

• Also uses data-flow ordering of wires connecting different Theorem Blocks as an 
ordering upon theorem definitions, allowing theorems to be proved in a desired 
sequence.



Strategy I 
Lambdas & Combinatorial Explosions

• Once I had sufficient machinery in place for computing data-
flow and connectivity, the prospect of extracting executable, 
extensionally equivalent ACL2 forms seemed very elegant.

• My first approach was to then begin at the node(s) with 
highest ranking, introduce a lambda term to apply them to 
their inputs, and recur in this fashion, having ACL2 perform 
Beta-reduction on the final form to extract an executable 
ACL2 form.

• The only function symbol I would introduce was that of the 
entire diagram - combinatorial explosion for branching wires!



Strategy II
Every Node is a Function

• Matt Kaufmann suggested I introduce a new 0-ary function for every 
node, with their executable counterparts disabled to force simplification.

• Using (local (encapsulate foo )) [via defstub] forms to introduce 
constrained functions for input nodes.

• Allows theorems to introduce rewrite rules in a strategic way, by always 
targeting function symbols as atomic units susceptible to rewrite.

• No more combinatorial explosion - nothing is in-lined (no more explicit 
lambdas to be Beta reduced or high-level lambda for the entire diagram!).

• Caveat: We now forgo executable counterparts for non-primitives, but 
these may be retained using ACL2-PC::S.



ForLoops
Shift Registers and Induction

• ForLoop Structures provide the first focus for 
inductive theorem proving in Method/ACL2.

• Termination is guaranteed, thus we may focus on 
developing induction heuristics which focus only on 
partial correctness (as the difference between partial 
and total correctness then collapse).

• Shift Registers are the only inductive structure in 
the language, are available in all looping structures, 
and thus developing powerful induction heuristics 
for Shift Registers is my current focus.



Status

• Nearly all applicative aspects of the language 
implemented.

• Hard problems that are partially solved: Loops 
with Shift Registers, via our induction heuristics.

• Hard problems yet to be focused upon: Heuristics 
for proving termination of WhileLoop Structures, 
methods for handling temporal properties in 
parallel diagrams.



Part II: 
Automating Interpretability

• Interpretability, conservativity, ordinal analyses, and 
combinatorial independencies of theories are all 
extremely fascinating proof-theoretic results.

• Parsons’ Theorem - PI_2 conservativity of I-
Sigma_1 over PRA is a deep and beautiful theorem.

• Reverse Mathematics program of Friedman and 
Simpson has a similar approach: Performing 
“reversals” of countable, non-set-theoretic mathematics 
to find to which set existence axioms interesting 
theorems are equivalent.



Holy Grail: 
Gentzen’s Hauptsatz

• Cut Elimination is at the heart of most of these results in structural 
proof theory.

• ACL2 has transfinite induction up to epsilon_0, making it a possible 
environment for formalizing Gentzen’s sequent calculus and his Mid-
Sequent Theorem.

• Long-term goal: An environment for automating the discovery of 
relative strengths of combined theorem proving environments, 
together with a method for translating proof objects of eligible 
statements between different theorem proving systems.

• Possible future: Interpretability logic?

• Exciting possibilities!  A beautiful problem well deserving of a serious 
effort.


