
Maintaining the
ACL2 Theorem Proving System

Matt Kaufmann and J Strother Moore
University of Texas at Austin

{kaufmann,moore}@cs.utexas.edu

ESCoR Workshop, FLoC, Seattle, Aug 21, 2006

1

Introduction

Topic of this talk:

What sorts of challenges do we face in making our
theorem prover useful in practice?

I Automated reasoning talks often focus on topics such as
algorithms, logics, and applications.

I This talk will focus on the pragmatics of maintenance .

For more information:

I See the full paper.
I Try out ACL2 (with assistance of documentation and

acl2-help email list):
http://www.cs.utexas.edu/users/moore/acl2/ .

2

Introduction

Topic of this talk:

What sorts of challenges do we face in making our
theorem prover useful in practice?

I Automated reasoning talks often focus on topics such as
algorithms, logics, and applications.

I This talk will focus on the pragmatics of maintenance .

For more information:

I See the full paper.
I Try out ACL2 (with assistance of documentation and

acl2-help email list):
http://www.cs.utexas.edu/users/moore/acl2/ .

3

Introduction

Topic of this talk:

What sorts of challenges do we face in making our
theorem prover useful in practice?

I Automated reasoning talks often focus on topics such as
algorithms, logics, and applications.

I This talk will focus on the pragmatics of maintenance .

For more information:

I See the full paper.
I Try out ACL2 (with assistance of documentation and

acl2-help email list):
http://www.cs.utexas.edu/users/moore/acl2/ .

4

Outline

Imagine that we’re going to lunch to have a chat about what
we’re doing to make automated reasoning useful in practice.

I Before We Eat:
Some general background on ACL2

I Main Course:
A selection of recent enhancements to ACL2

I Dessert:
Discussion

I invite questions and comments throughout the talk, not only
during dessert. In particular, it would be interesting to compare
experiences in maintaining automated reasoning systems.

5

Outline

Imagine that we’re going to lunch to have a chat about what
we’re doing to make automated reasoning useful in practice.

I Before We Eat:
Some general background on ACL2

I Main Course:
A selection of recent enhancements to ACL2

I Dessert:
Discussion

I invite questions and comments throughout the talk, not only
during dessert. In particular, it would be interesting to compare
experiences in maintaining automated reasoning systems.

6

Outline

Imagine that we’re going to lunch to have a chat about what
we’re doing to make automated reasoning useful in practice.

I Before We Eat:
Some general background on ACL2

I Main Course:
A selection of recent enhancements to ACL2

I Dessert:
Discussion

I invite questions and comments throughout the talk, not only
during dessert. In particular, it would be interesting to compare
experiences in maintaining automated reasoning systems.

7

Outline

Imagine that we’re going to lunch to have a chat about what
we’re doing to make automated reasoning useful in practice.

I Before We Eat:
Some general background on ACL2

I Main Course:
A selection of recent enhancements to ACL2

I Dessert:
Discussion

I invite questions and comments throughout the talk, not only
during dessert. In particular, it would be interesting to compare
experiences in maintaining automated reasoning systems.

8

Outline

Imagine that we’re going to lunch to have a chat about what
we’re doing to make automated reasoning useful in practice.

I Before We Eat:
Some general background on ACL2

I Main Course:
A selection of recent enhancements to ACL2

I Dessert:
Discussion

I invite questions and comments throughout the talk, not only
during dessert. In particular, it would be interesting to compare
experiences in maintaining automated reasoning systems.

9

Before We Eat:
Some general background on ACL2

I Introduction to ACL2

I Some milestones

I The user’s view of ACL2: A small example

I Summary of some useful ACL2 features

10

Introduction to ACL2

I ACL2 (ACL2 = ACLACL): A Computational Logic for
Applicative Common Lisp

I Programmed primarily in itself: forces attention to sufficient
language features and efficiency; functional language
facilitates maintenance (vs. Nqthm, e.g.)

I Has evolved with user feedback — to see applications,
follow “Books and Papers” link from ACL2 home page and
then follow “Quick Summary” link

I Source files total 8.4M (Version 3.0.1)
I 256 release note items strictly after March, 2004 release

(2.8); much more waiting on the “to do” list

11

Introduction to ACL2

I ACL2 (ACL2 = ACLACL): A Computational Logic for
Applicative Common Lisp

I Programmed primarily in itself: forces attention to sufficient
language features and efficiency; functional language
facilitates maintenance (vs. Nqthm, e.g.)

I Has evolved with user feedback — to see applications,
follow “Books and Papers” link from ACL2 home page and
then follow “Quick Summary” link

I Source files total 8.4M (Version 3.0.1)
I 256 release note items strictly after March, 2004 release

(2.8); much more waiting on the “to do” list

12

Introduction to ACL2

I ACL2 (ACL2 = ACLACL): A Computational Logic for
Applicative Common Lisp

I Programmed primarily in itself: forces attention to sufficient
language features and efficiency; functional language
facilitates maintenance (vs. Nqthm, e.g.)

I Has evolved with user feedback — to see applications,
follow “Books and Papers” link from ACL2 home page and
then follow “Quick Summary” link

I Source files total 8.4M (Version 3.0.1)
I 256 release note items strictly after March, 2004 release

(2.8); much more waiting on the “to do” list

13

Introduction to ACL2

I ACL2 (ACL2 = ACLACL): A Computational Logic for
Applicative Common Lisp

I Programmed primarily in itself: forces attention to sufficient
language features and efficiency; functional language
facilitates maintenance (vs. Nqthm, e.g.)

I Has evolved with user feedback — to see applications,
follow “Books and Papers” link from ACL2 home page and
then follow “Quick Summary” link

I Source files total 8.4M (Version 3.0.1)
I 256 release note items strictly after March, 2004 release

(2.8); much more waiting on the “to do” list

14

Introduction to ACL2

I ACL2 (ACL2 = ACLACL): A Computational Logic for
Applicative Common Lisp

I Programmed primarily in itself: forces attention to sufficient
language features and efficiency; functional language
facilitates maintenance (vs. Nqthm, e.g.)

I Has evolved with user feedback — to see applications,
follow “Books and Papers” link from ACL2 home page and
then follow “Quick Summary” link

I Source files total 8.4M (Version 3.0.1)
I 256 release note items strictly after March, 2004 release

(2.8); much more waiting on the “to do” list

15

Some milestones

I 1971-73: Boyer/Moore “Edinburgh Pure Lisp Theorem
Prover”

I 1979: Boyer and Moore, A Computational Logic
I 1986: Kaufmann joins Boyer/Moore project
I 1988: Boyer and Moore, A Computational Logic Handbook
I 1989: Boyer and Moore begin ACL2 (but continue to

maintain Nqthm)
I 1992: Final release of Boyer-Moore “Nqthm” prover
I 1993: Kaufmann formally added as a co-author of ACL2
I 1999: First of six (so far) ACL2 workshops
I 2000: Computer-Aided Reasoning: An Approach published
I 2006: Boyer, Kaufmann, and Moore win 2005 ACM

Software System Award for Boyer-Moore family of provers

16

The user’s view of ACL2: A small example

Example: the length is unchanged when a list is reversed.
But first, a summary of ACL2 interaction (thanks, Robert Krug):

I ACL2 is entirely automatic once you start it.
I It has considerable built-in knowledge about predicate

logic, linear arithmetic, equality reasoning, etc. — but this
is rarely enough.

I Users can examine output of failed proofs to learn what
needs to be done to succeed.

I In the example below, we see the typical activity of creating
and proving a rewrite rule based on that output.

I Such helper lemmas, when well designed, can be reused
automatically.

I There is a large body of proved theorems (“books”)
distributed with ACL2, containing just such rules.

17

The user’s view of ACL2: A small example

Example: the length is unchanged when a list is reversed.
But first, a summary of ACL2 interaction (thanks, Robert Krug):

I ACL2 is entirely automatic once you start it.
I It has considerable built-in knowledge about predicate

logic, linear arithmetic, equality reasoning, etc. — but this
is rarely enough.

I Users can examine output of failed proofs to learn what
needs to be done to succeed.

I In the example below, we see the typical activity of creating
and proving a rewrite rule based on that output.

I Such helper lemmas, when well designed, can be reused
automatically.

I There is a large body of proved theorems (“books”)
distributed with ACL2, containing just such rules.

18

The user’s view of ACL2: A small example

Example: the length is unchanged when a list is reversed.
But first, a summary of ACL2 interaction (thanks, Robert Krug):

I ACL2 is entirely automatic once you start it.
I It has considerable built-in knowledge about predicate

logic, linear arithmetic, equality reasoning, etc. — but this
is rarely enough.

I Users can examine output of failed proofs to learn what
needs to be done to succeed.

I In the example below, we see the typical activity of creating
and proving a rewrite rule based on that output.

I Such helper lemmas, when well designed, can be reused
automatically.

I There is a large body of proved theorems (“books”)
distributed with ACL2, containing just such rules.

19

The Waterfall

Irrelevance

Equality

Destructor Elimination

User
Generalization

Induction

Simplification

pool

Elimination of

formula

20

I’ll discuss this partial log:

ACL2 !>(defthm len-reverse
(equal (len (reverse x)) (len x)))

ACL2 Warning [Non-rec] in (DEFTHM LEN-REVERSE ...): A :REWRITE rule
generated from LEN-REVERSE will be triggered only by terms containing
the non-recursive function symbol REVERSE. Unless this function is
disabled, this rule is unlikely ever to be used.

This simplifies, using the :definition REVERSE, to the following two
conjectures.

Subgoal 2
(IMPLIES (STRINGP X)

(EQUAL (LEN (COERCE (REVAPPEND (COERCE X ’LIST) NIL)
’STRING))

(LEN X))).

But simplification reduces this to T, using the :definition LEN, the
:executable-counterpart of EQUAL and primitive type reasoning.

Subgoal 1
(IMPLIES (NOT (STRINGP X))

(EQUAL (LEN (REVAPPEND X NIL))
(LEN X))).

Name the formula above *1.

...............

******** FAILED ******** See :DOC failure ******** FAILED ********

21

The failed goal:

(IMPLIES (NOT (STRINGP X))
(EQUAL (LEN (REVAPPEND X NIL))

(LEN X)))

With a little thought we submit this rewrite rule, which will
complete the proof of len-reverse .

(DEFTHM LEN-REVAPPEND
(EQUAL (LEN (REVAPPEND X Y))

(+ (LEN X) (LEN Y))))

22

The failed goal:

(IMPLIES (NOT (STRINGP X))
(EQUAL (LEN (REVAPPEND X NIL))

(LEN X)))

With a little thought we submit this rewrite rule, which will
complete the proof of len-reverse .

(DEFTHM LEN-REVAPPEND
(EQUAL (LEN (REVAPPEND X Y))

(+ (LEN X) (LEN Y))))

23

ACL2 !>(defthm len-revappend
(equal (len (revappend x y))

(+ (len x) (len y))))

Name the formula above *1.

Perhaps we can prove *1 by induction. Three induction schemes are suggested by
this conjecture. These merge into two derived induction schemes. However, one
of these is flawed and so we are left with one viable candidate.

...............

Time: 0.01 seconds (prove: 0.01, print: 0.00, other: 0.00)
LEN-REVAPPEND

ACL2 !>(defthm len-reverse
(equal (len (reverse x)) (len x)))

...............

Summary
Form: (DEFTHM LEN-REVERSE ...)
Rules: ((:DEFINITION LEN)

...............

(:REWRITE LEN-REVAPPEND)
(:TYPE-PRESCRIPTION LEN))

Warnings: Non-rec
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)

LEN-REVERSE
ACL2 !>

24

ACL2 !>:pl len

Rune: (:REWRITE LEN-REVERSE)
Status: Enabled
Lhs: (LEN (REVERSE X))
Rhs: (LEN X)
Hyps: T
Equiv: EQUAL
Backchain-limit-lst: NIL
Subclass: ABBREVIATION

Rune: (:REWRITE LEN-REVAPPEND)
Status: Enabled

...............

ACL2 !>:pl (len (reverse (cons a b)))

1. LEN-REVERSE
New term: (LEN (CONS A B))
Hypotheses: <none>
Equiv: EQUAL
Substitution: ((X CONS A B))

25

Summary of some useful ACL2 features (1)

Note: This partial list is intended to set the stage for our
discussion of maintenance.

I Documentation : over 1000 topics, organized
hierarchically with hyperlinks (or 1200+ pages)

I Error messages and warnings
I Macros , and more via make-event

I Top-level read-eval-print loop provides interactive testing
I Efficient evaluation of ground terms in top-level loop and

proofs, via guards, compilation, single-threaded objects,
and mbe (“must be equal”)

I Proof techniques : congruence-based conditional
rewriting, many others

I Namespaces via Lisp packages

26

Summary of some useful ACL2 features (2)

I Books (files) of events (top-level forms): definitions
(defun), and theorems (defthm), etc.

I Certification and subsequent include-book
I Local events present a logical and maintenance challenge

but are very useful for scoping
I About 1600 books in over 270 directories, contributed by

many; useful for regression testing

I Encapsulate scoping mechanism also provides
modularity; and it provides partial definitions

I A functional instantiation utility for a kind of
“second-order” reasoning

27

Summary of some useful ACL2 features (3)

I User-installed simplifiers : meta-rules
I Proof control : rule classes, hints (explicit, computed,

default), theories
I Database control : undo and undo-the-undo commands
I Interactive proof-checker : a goal manager providing the

feel of tactic-based proof assistants but with ACL2
automation available

I Proof debug : proof-checker (above), inspection utility for
rewriter loops, break-rewrite rewrite debugger, and
proof-tree display for proof log navigation

28

Main Course:
A selection of recent enhancements to ACL2

I In the next few slides, we’ll discuss a variety of examples
that illustrate a range of maintenance tasks, largely in
response to user feedback.

I I’ll keep the slides somewhat terse but provide verbal
elaboration. Details may be found in the paper.

29

Subgoal counting

Ouch – “six constraints generated” yet only five subgoals!
We now augment the goal above by adding the hypothesis indicated by
the :USE hint. This produces a propositional tautology. The hypothesis
can be derived from AC-FN-LIST-REV via functional instantiation, provided
we can establish the six constraints generated.

Subgoal 5
(EQUAL (TIMES-LIST X)

(IF (ATOM X)
1
(* (CAR X) (TIMES-LIST (CDR X))))).

But simplification reduces this to T, using the :definitions ATOM and
TIMES-LIST and primitive type reasoning.

Subgoal 4
....

After a fix:
We now augment provided
we can establish the six constraints generated. By the simple :rewrite
rules ASSOCIATIVITY-OF-* and UNICITY-OF-1 we reduce the six constraints
to five subgoals.

30

A rough edge in theory control

(include-book "ordinals/ordinals" :dir :system)
(defund fact (n) ; defun , then disable

(if (zp n) 1 (* n (fact (1- n)))))
(thm (equal (fact 65534) 0) ; silly example

:hints
(("Goal"

:in-theory
(disable (:executable-counterpart fact)))))

Stack overflow!! The problem: evaluation of
(O<= (fact 65534) 0) in spite of the above disable ,
from the following forward-chaining rule:

(IMPLIES (AND (NOT (EQUAL A B))
(O<= A B)
(O-P A) (O-P B))

(O< A B))

Solution : Evaluator that comprehends which rules are enabled.
31

A rough edge in theory control

(include-book "ordinals/ordinals" :dir :system)
(defund fact (n) ; defun , then disable

(if (zp n) 1 (* n (fact (1- n)))))
(thm (equal (fact 65534) 0) ; silly example

:hints
(("Goal"

:in-theory
(disable (:executable-counterpart fact)))))

Stack overflow!! The problem: evaluation of
(O<= (fact 65534) 0) in spite of the above disable ,
from the following forward-chaining rule:

(IMPLIES (AND (NOT (EQUAL A B))
(O<= A B)
(O-P A) (O-P B))

(O< A B))

Solution : Evaluator that comprehends which rules are enabled.
32

A rough edge in theory control

(include-book "ordinals/ordinals" :dir :system)
(defund fact (n) ; defun , then disable

(if (zp n) 1 (* n (fact (1- n)))))
(thm (equal (fact 65534) 0) ; silly example

:hints
(("Goal"

:in-theory
(disable (:executable-counterpart fact)))))

Stack overflow!! The problem: evaluation of
(O<= (fact 65534) 0) in spite of the above disable ,
from the following forward-chaining rule:

(IMPLIES (AND (NOT (EQUAL A B))
(O<= A B)
(O-P A) (O-P B))

(O< A B))

Solution : Evaluator that comprehends which rules are enabled.
33

Prover heuristics tweaks

These improvements came out of user feedback and were
regression tested:

I Avoid certain infinite loops during destructor elimination
I Avoid forward-chaining from a rewritten term
I Avoid certain infinite loops due to interaction of equality

reasoning with opening up of recursive functions
I Limit subsumption checks (to 1,000,000 matcher calls)

The above are all documented in the source code, which
contains over 36,000 lines of comments (not including the
applicative source code itself, which also serves as
documentation!).

34

Prover heuristics tweaks

These improvements came out of user feedback and were
regression tested:

I Avoid certain infinite loops during destructor elimination
I Avoid forward-chaining from a rewritten term
I Avoid certain infinite loops due to interaction of equality

reasoning with opening up of recursive functions
I Limit subsumption checks (to 1,000,000 matcher calls)

The above are all documented in the source code, which
contains over 36,000 lines of comments (not including the
applicative source code itself, which also serves as
documentation!).

35

Prover heuristics tweaks

These improvements came out of user feedback and were
regression tested:

I Avoid certain infinite loops during destructor elimination
I Avoid forward-chaining from a rewritten term
I Avoid certain infinite loops due to interaction of equality

reasoning with opening up of recursive functions
I Limit subsumption checks (to 1,000,000 matcher calls)

The above are all documented in the source code, which
contains over 36,000 lines of comments (not including the
applicative source code itself, which also serves as
documentation!).

36

Prover heuristics tweaks

These improvements came out of user feedback and were
regression tested:

I Avoid certain infinite loops during destructor elimination
I Avoid forward-chaining from a rewritten term
I Avoid certain infinite loops due to interaction of equality

reasoning with opening up of recursive functions
I Limit subsumption checks (to 1,000,000 matcher calls)

The above are all documented in the source code, which
contains over 36,000 lines of comments (not including the
applicative source code itself, which also serves as
documentation!).

37

Prover heuristics tweaks

These improvements came out of user feedback and were
regression tested:

I Avoid certain infinite loops during destructor elimination
I Avoid forward-chaining from a rewritten term
I Avoid certain infinite loops due to interaction of equality

reasoning with opening up of recursive functions
I Limit subsumption checks (to 1,000,000 matcher calls)

The above are all documented in the source code, which
contains over 36,000 lines of comments (not including the
applicative source code itself, which also serves as
documentation!).

38

Prover heuristics tweaks

These improvements came out of user feedback and were
regression tested:

I Avoid certain infinite loops during destructor elimination
I Avoid forward-chaining from a rewritten term
I Avoid certain infinite loops due to interaction of equality

reasoning with opening up of recursive functions
I Limit subsumption checks (to 1,000,000 matcher calls)

The above are all documented in the source code, which
contains over 36,000 lines of comments (not including the
applicative source code itself, which also serves as
documentation!).

39

A library improvement using MBE(1)

I Many distributed books undergo improvements

I One such set of books is known as the rtl library

I At AMD, we needed more efficient execution

40

A library improvement using MBE(2)

Old definition of (bits x i j) used floor, mod, and
exponentiation:

(if (or (not (integerp i)) (not (integerp j)))
0

(fl (/ (mod x (expt 2 (1+ i)))
(expt 2 j))))

Now, bits executes using bitwise-and and shift:

(mbe :logic [[as above]]
:exec ; generates proof obligation
(if (< i j)

0
(logand (ash x (- j))

(1- (ash 1 (1+ (- i j)))))))

Avoided the need to modify existing proofs!
41

A library improvement using MBE(2)

Old definition of (bits x i j) used floor, mod, and
exponentiation:

(if (or (not (integerp i)) (not (integerp j)))
0

(fl (/ (mod x (expt 2 (1+ i)))
(expt 2 j))))

Now, bits executes using bitwise-and and shift:

(mbe :logic [[as above]]
:exec ; generates proof obligation
(if (< i j)

0
(logand (ash x (- j))

(1- (ash 1 (1+ (- i j)))))))

Avoided the need to modify existing proofs!
42

A library improvement using MBE(2)

Old definition of (bits x i j) used floor, mod, and
exponentiation:

(if (or (not (integerp i)) (not (integerp j)))
0

(fl (/ (mod x (expt 2 (1+ i)))
(expt 2 j))))

Now, bits executes using bitwise-and and shift:

(mbe :logic [[as above]]
:exec ; generates proof obligation
(if (< i j)

0
(logand (ash x (- j))

(1- (ash 1 (1+ (- i j)))))))

Avoided the need to modify existing proofs!
43

Some convenience features

I Rewriter debug command cw-gstack takes an argument
for the number of frames to display

I Set-enforce-redundancy allows user to enforce a
style of book management, where proofs are kept in
subsidiary books

I Disabledp , like other commands, allows a macro to be
an alias for a function

I Compilation is fully supported at the book level

44

Some convenience features

I Rewriter debug command cw-gstack takes an argument
for the number of frames to display

I Set-enforce-redundancy allows user to enforce a
style of book management, where proofs are kept in
subsidiary books

I Disabledp , like other commands, allows a macro to be
an alias for a function

I Compilation is fully supported at the book level

45

Some convenience features

I Rewriter debug command cw-gstack takes an argument
for the number of frames to display

I Set-enforce-redundancy allows user to enforce a
style of book management, where proofs are kept in
subsidiary books

I Disabledp , like other commands, allows a macro to be
an alias for a function

I Compilation is fully supported at the book level

46

Some convenience features

I Rewriter debug command cw-gstack takes an argument
for the number of frames to display

I Set-enforce-redundancy allows user to enforce a
style of book management, where proofs are kept in
subsidiary books

I Disabledp , like other commands, allows a macro to be
an alias for a function

I Compilation is fully supported at the book level

47

Some convenience features

I Rewriter debug command cw-gstack takes an argument
for the number of frames to display

I Set-enforce-redundancy allows user to enforce a
style of book management, where proofs are kept in
subsidiary books

I Disabledp , like other commands, allows a macro to be
an alias for a function

I Compilation is fully supported at the book level

48

Portability
We support all major Common Lisp implementations of which
we are aware:

I Gnu Common Lisp (GCL)
I OpenMCL
I Allegro Common Lisp
I SBCL
I CMU Common LIsp
I CLISP
I Lispworks

Why support so many platforms?

I Catch bugs
I User choice (e.g., profilers vary)
I Support experimentation (e.g., parallelism in OpenMCL

and SBCL (Rager), hash-cons in GCL and OpenMCL
(Boyer/Hunt))

49

Namespace control

Lisp (and ACL2) packages provide namespace control: e.g.,
the same string "ABC" can name a symbol in two different
packages. There have been several bugs involving packages:

I Disallow "LISP" package (exists already in some
implementations, not others)

I Require uppercase package names — at least one Lisp
gets this wrong

I Hand-coded function to execute pkg-witness : bug
recently found in its default behavior for non-strings

50

Some other recent improvements

I Improved reporting in rewriter’s debugger
(break-rewrite) for free variables

I Several bugs related to local — presents a serious
challenge to implementing logic!

I Double-rewrite utility to override the rewriter’s caching
of results in the presence of congruences (see recent
ACL2 workshop paper)

I Miscellaneous bug fixes, e.g., in timing utility and handling
of Lisp type specs (satisfies)

I Recent performance enhancements, especially for
theories: Critical for users at Rockwell Collins

I Prover time limits
I Context recovery for failed proofs (redo-flat)

51

Some other recent improvements

I Improved reporting in rewriter’s debugger
(break-rewrite) for free variables

I Several bugs related to local — presents a serious
challenge to implementing logic!

I Double-rewrite utility to override the rewriter’s caching
of results in the presence of congruences (see recent
ACL2 workshop paper)

I Miscellaneous bug fixes, e.g., in timing utility and handling
of Lisp type specs (satisfies)

I Recent performance enhancements, especially for
theories: Critical for users at Rockwell Collins

I Prover time limits
I Context recovery for failed proofs (redo-flat)

52

Some other recent improvements

I Improved reporting in rewriter’s debugger
(break-rewrite) for free variables

I Several bugs related to local — presents a serious
challenge to implementing logic!

I Double-rewrite utility to override the rewriter’s caching
of results in the presence of congruences (see recent
ACL2 workshop paper)

I Miscellaneous bug fixes, e.g., in timing utility and handling
of Lisp type specs (satisfies)

I Recent performance enhancements, especially for
theories: Critical for users at Rockwell Collins

I Prover time limits
I Context recovery for failed proofs (redo-flat)

53

Some other recent improvements

I Improved reporting in rewriter’s debugger
(break-rewrite) for free variables

I Several bugs related to local — presents a serious
challenge to implementing logic!

I Double-rewrite utility to override the rewriter’s caching
of results in the presence of congruences (see recent
ACL2 workshop paper)

I Miscellaneous bug fixes, e.g., in timing utility and handling
of Lisp type specs (satisfies)

I Recent performance enhancements, especially for
theories: Critical for users at Rockwell Collins

I Prover time limits
I Context recovery for failed proofs (redo-flat)

54

Some other recent improvements

I Improved reporting in rewriter’s debugger
(break-rewrite) for free variables

I Several bugs related to local — presents a serious
challenge to implementing logic!

I Double-rewrite utility to override the rewriter’s caching
of results in the presence of congruences (see recent
ACL2 workshop paper)

I Miscellaneous bug fixes, e.g., in timing utility and handling
of Lisp type specs (satisfies)

I Recent performance enhancements, especially for
theories: Critical for users at Rockwell Collins

I Prover time limits
I Context recovery for failed proofs (redo-flat)

55

Some other recent improvements

I Improved reporting in rewriter’s debugger
(break-rewrite) for free variables

I Several bugs related to local — presents a serious
challenge to implementing logic!

I Double-rewrite utility to override the rewriter’s caching
of results in the presence of congruences (see recent
ACL2 workshop paper)

I Miscellaneous bug fixes, e.g., in timing utility and handling
of Lisp type specs (satisfies)

I Recent performance enhancements, especially for
theories: Critical for users at Rockwell Collins

I Prover time limits
I Context recovery for failed proofs (redo-flat)

56

Some other recent improvements

I Improved reporting in rewriter’s debugger
(break-rewrite) for free variables

I Several bugs related to local — presents a serious
challenge to implementing logic!

I Double-rewrite utility to override the rewriter’s caching
of results in the presence of congruences (see recent
ACL2 workshop paper)

I Miscellaneous bug fixes, e.g., in timing utility and handling
of Lisp type specs (satisfies)

I Recent performance enhancements, especially for
theories: Critical for users at Rockwell Collins

I Prover time limits
I Context recovery for failed proofs (redo-flat)

57

Dessert:
Discussion

A final note: Throughout maintenance we make some effort to
maintain backward compatibility:

I Support for user community
I Regression suite is critical

Fed up yet?

Had your fill?

If not, then let’s chat some more. Comments? Questions?

58

Dessert:
Discussion

A final note: Throughout maintenance we make some effort to
maintain backward compatibility:

I Support for user community
I Regression suite is critical

Fed up yet?

Had your fill?

If not, then let’s chat some more. Comments? Questions?

59

Dessert:
Discussion

A final note: Throughout maintenance we make some effort to
maintain backward compatibility:

I Support for user community
I Regression suite is critical

Fed up yet?

Had your fill?

If not, then let’s chat some more. Comments? Questions?

60

Dessert:
Discussion

A final note: Throughout maintenance we make some effort to
maintain backward compatibility:

I Support for user community
I Regression suite is critical

Fed up yet?

Had your fill?

If not, then let’s chat some more. Comments? Questions?

61

