
Overview of KAS, appliations, andproving a lause proessor
ACL2 Weekly Seminar - ACES 3.116

4PM, January 27th, 2010
Rob SumnersAdvaned Miro Devies, In.robert.sumners�amd.om

1

b Outline
� Overview of KAS
� Motivation, design, features
� Appliations
� Proedures, heuristis, examples
� Untrusted Clause Proessing
� Are we there yet? No.

2

b Motivation - 1
� Most theorems are proven by simpli�ation orindution followed by simpli�ation�Most proofs about hardware/software systemsredue to de�ning and proving invariants� Proving (indutive) invariants requires onsiderablease analysis� Main Idea:� De�ne an eÆient term rewriter and implement pro-edures and heuristis as sets of rewrite rules� Eventually, we want an untrusted lause pro-essor
� So, write KAS in ACL2 and prove it orret - easy.

3

b Start from Simple
� Mutually reursive funtion lique:� (apply-rule trm rl tx) { apply a rewrite rule� (try-rules trm rls tx) { apply a list of rules� (rewrite-if args tx) { rewrite args of if term� (rewrite-list lst tx) { rewrite a list of args� (rewrite-args args fn tx) { rewrite args of a term� (rewrite-step trm tx) { rewrite args then apply rules� (rewrite-term trm tx) { �xpoint of rewrite-step� Top-level funtion:(defun simple-rewrite (trm) (rewrite-term trm ()))
� tx is a list of equalities whih are urrentlyassumed� Extended when the true and false branh of an ifterm are rewritten

4

b KAS Arhiteture Overview
� KAS stands for Kernel Arhiteture Simpli�er� KAS is best viewed as an optimized elaboration ofthis simple rewriter� Similar to ACL2, KAS uses inside-out, ordered, on-ditional, rewriting
� How is this a simpli�er?� Implement simpli�ation on top of KAS as instanesof a meta-proess� Transform terms (soundly) via rewrite rules� Support eÆient omplex user funtions to guide ap-pliation of these rewrite rules
� Interfaes with ACL2 as a trusted lause pro-essor
� Loads proven rules and de�nitions from ACL2 world5

b Two main areas of optimization
� Terms and Memory management
� How do we represent and store terms eÆiently?
� How do we manage this memory?
� Memoization and Context management
� How do we ahe previous omputations?
� How do we deal with hanging ontexts?

6

b Terms and Memory management - 1
�Terms are main onstrut manipulated in KASand ACL2� Use large �xnum arrays in stobjs to store nodes interms� Fixnum indexes into these arrays used as pointers
� Many bene�ts ompared to using ons, but
� It is less elegant { mitigated by use of maros
Æ Funtions and maros also used for print/debug� Need for garbage olletion { mitigated by node pro-motion sheme

7

b Terms and Memory management - 2
� Node Promotion Rules� All nodes are initially \junk" and promoted ifone of the following applies:
� (a) node is a quoted onstant or variable
� (b) node is in normal form in the urrent ontext� () arguments are promoted and mathes previoustransient nodeÆ Use simple ahe to store previous viable mathesÆ Inrementally grow set of promoted nodes { withsome user ontrol

8

b Terms and Memory management - 3
� Transient nodes
� are not uniquely onstruted
� have minimal storage per node
� are relaimed eÆiently by \stak" dealloation
� Promoted nodes
� are onstruted uniquely
� inlude storage for memoized omputations
� are never relaimed and never demoted

9

b Memoization and Context management - 1
� Need to ahe rewrite results to avoid repeatedomputation� Every promoted node inludes a repnode �eld point-ing to another node� An invariant of KAS exeution is that a node is alwaysequivalent to its repnode assuming the urrent ontextÆWhen an equality is assumed from if test, a repnodeis reated� When KAS rewrites a node, it �rst onsultsrepnode as replaement� repnodes are updated to resulting normal-forms whenrewriting ompletes
� Obviously we need a system for undoing repn-ode assignments when we pop ontexts

10

b Memoization and Context management - 2
� Every repnode is tagged with a ontext vetor� A ontext vetor is a subset of the urrent ontextenoded as a bitvetor� Invariant is every node is equivalent to its repnodeassuming its ontext vetor
� Every funtion in main rewrite loop returnsontext vetor along with rewrite result� An example to demonstrate ontext manage-ment of repnodes:(if (= a b) (if (= b) (= (f a) (f))(= (f a) (f b)))(= (f a) (f a)))
� repnode is updated or undone for (f a) tomath equality in eah leaf

11

b Several Additional Optimizations
� Avoiding Lisp Exeution Overhead� �xnums, stobjs, and more �xnums { no onsing inmain loop� inlining and tail reursion to avoid overhead of fun-tion alls� Speialized Data Strutures� undo stak whih is a stak of lists of \undos" to beperformed when popping the ontext
� Additional Memoization
� KAS tags nodes whih have been rewritten

12

b User Control and Interfaing - 1
� KAS imports onditional rewrite rules provenas ACL2 theorems� Fine-grained rewrite ontrol supported throughsieve operator
� Sieves an aess ACL2 state and KAS logi stobj
� Sieves an aess and update user stobj
� Sieves an determine if a rule is applied or not
� Sieves return a list of updates to the KAS logi stobjÆ Updates are restrited to have no e�et on soundnessof KAS

13

b User Control and Interfaing - 2
� The urrent list of sieve funtion updates:operation side effet---------------- --------------------------------------set-var-bound bind a free variable in a rewriteset-rule-sieves modify the filters attahed to a ruleset-rule-enabled enable or disable a rewrite ruleset-rule-tr modify ounter for number of rule appsset-node-step set node alloation inremental stepset-node-limit set node alloation limitshange-rule-order hange the order of rewrite rulesset-rule-traed enable or disable rule trae outputset-user-mark set or lear a boolean mark on a node

14

b Implemented, Tested, Resinded
� In�nite Rewriting
� Only support unonditional rewriting
� Not enough bene�t for ompliations in ontexts
� Targeted rewriting
� Only rewrite the subterms whih hange in a ontext
� Required maintaining bakpointers
� Allow user to rewrite everything
� Use speial operators for ontexts, hypothesis, et.
� Contextual rewriting
� Fairly easy to avoid and it ompliated proof e�ort15

b Simulating ACL2 simpli�ation
� Type presription and Forward haining� Contextual memoization will retain omputed fatsneeded to relieve hypothesis of rules� Congruene rewriting� KAS only supports equal, but other equivalenes anbe \mapped" to equal through normalizing funtions(defthm set=-to-equal (equal (set= x y) (= (n-s x) (n-s y))))
� Linear Arithmeti { a bit more involved� De�ne rules to normalize linear terms plaingoperands in term order� De�ne rule to seletively ombine and fator out linearterms with mathing �rst operands� Can be used for other \linear" operators suh as setoperations� Other examples: BDDs, Lambda rewriting(mostly), ... 16

b Example: Case Splitting
� Introdue identity funtions used as stages inmeta-proess(defun prv (x) x) (defun prv2 (x) x) (defun prv3 (x) x)
� Prove rewrite rules to sequene term transi-tions in meta-proess� Use sieves to de�ne omplex funtions or funtionsoutside of term transformation� ase-split selets a term based on weighted our-rene in if tests(defthm (equal (prv3 t) t))(defthm (equal (prv2 (if x y z)) (if x y z)))(defthm (equal (prv2 (if x t (hide z))) (if x t (prv z)))(defthm (equal (prv2 (if x (prv3 y) z))(prv2 (if x (prv y) z))))(defthm (equal (prv x) x))(defthm (implies (sieve (ase-split C))(equal (prv x)(prv2 (if C (prv3 x) (hide x))))))

17

b Example: Failure Reporting
� A di�erent meta-proess for reporting a failingase as a list of prediates� Designed to work with ase splitting proess usingrfl and gfl identity funtions(defthm (implies (sieve (report-to-w leaf))(equal (rfl leaf x) x)))(defthm (implies (sieve (report-to-w tst))(equal (rfl (if tst tbr fbr) x)(rfl tbr x))))(defthm (implies (and (sieve (non-nilp tbr))(sieve (report-to-w (not tst))))(equal (rfl (if tst tbr fbr) x)(rfl fbr x))))(defthm (equal (gfl x) (fail (rfl x x))))(defthm (equal (gfl t) t))
� Standard defthmk maro takes a term � andreates a all to KAS with (gfl (prv �))

18

b Appliation: Proving Invariants - 1
� Start with a stuttering re�nement for a simplepipeline model
� Stuttering re�nement between ma level and isa level� Example modi�ed from DLX pipeline by Mano-lios,Srinivasan
� Prediate de�ning a mathed ma state:(defun ma-mathes-isa (x)(if (ommit x)(equal (rep (ma x)) (isa (rep x)))(and (equal (rep (ma x)) (rep x))(< (rank (ma x)) (rank x)))))
� rep maps ma state to isa state
� rank is well-founded measure on ma states
� ommit de�nes when ma will make isa visible step

19

b Appliation: Proving Invariants - 2
� Idea fromManolios,Srinivasan: let the ma stepsbuild invariant
� Leads to brutal ase explosion in a few steps(defun maX4 (m) (ma (ma (ma (ma (flush m))))))(defun maX5 (m) (ma (maX4 m)))(defun maX6 (m) (ma (maX5 m)))(defun maX7 (m) (ma (maX6 m)))(defun maX8 (m) (ma (maX7 m)))(defthmk maX4-proof (ma-mathes-isa (maX4 m)))(defthmk maX5-proof (ma-mathes-isa (maX5 m)))(defthmk maX6-proof (ma-mathes-isa (maX6 m)))(defthmk maX7-proof (ma-mathes-isa (maX7 m)))(defthmk maX8-proof (ma-mathes-isa (maX8 m)))
� ACL2 blows up on maX5, KAS takes a minutefor maX8, but how about proof from arbitrarystate:(defthmk ma-proof (ma-mathes-isa (ma (ma (ma (ma x))))))

20

b Appliation: Proving Invariants - 3
� Extend this basi idea and inlude �nite statesearh� Assume domain of rep is �nite list of booleansÆ Introdue Skolem onstants to model arbitrary data,ommands, identi�ers, et.� De�ne next* as the run to ommit funtion:(defun next* (s)(delare (xargs :measure (rank s)))(if (ommit s) (next s) (next* (next s))))
� Explore the states starting with (rep (init))and transitioning with (rep (next* s))� Use KAS to rewrite (rep (next* s)) with heuris-tis to ontrol expansion of next funtion integratedwith ase splitting� Iterate until you reah a �xpoint or �nd a state whihinvalidates the invarint (inv (rep s)) whih you aretrying to prove 21

b Proving Clause Proessor - 1
� We would like to prove a lause-proessorrule for kernel-simplify(defun kernel-simplify (l hint state ls us)(delare (xargs :stobjs state ls us))(mv-let (erp term ttree state ls us)(kern-simplify-main l hint ls us state)(delare (ignore ttree))(mv erp (list (list term)) state ls us)))(defthm orretness-of-kernel-simplify(implies (and (pseudo-term-listp l)(alistp a)(my-evl(onjoin-lauses(lauses-result (kernel-simplify l hint st ls us))) a)))(my-evl (disjoin l) a)))
� Where my-evl is an evaluator over a usefulset of funtions for a given problem� If your appliation of KAS requires new funtions,then a new evaluator will also be needed� But, we need an invariant to persist on logistate stobj ls, so no die...

22

b Proving Clause Proessor - 2
� Ok, we an reate loal-stobjs and ensure theproper invariants are maintained in all alls(defthm orretness-of-kernel-simplify(implies (and (pseudo-term-listp l)(alistp a)(my-evl(onjoin-lauses(lauses-result (kernel-simplify l hint st))) a)))(my-evl (disjoin l) a)))
� Another potential problem. KAS uses the-orems from the urrent world and in order toprove this result...� ...we will need theorems relating these theorems tomy-evl omputation

23

b Proving Clause Proessor - 3
� Fear not, we an generate these theorems andpush them through ACL2 (ugly as it may be):(defthm foo (equal <lhs> <rhs>))... generates ...(defun-sk my-eqv (x y)(forall (a) (equal (my-evl x a) (my-evl y a))))(defthm foo-my-evl (my-eqv (quote <lhs>) (quote <rhs>)))
� And, all we need is to now prove is:(defthm kas-good (my-eqv (kas-rewrite trm state) trm))
� No problem....

24

b Proving KAS sound
� Overview
� Proving termination
� De�ning intermediate \models" of KAS
� Proving equivalene between levels of de�nition
� Verifying guards { yeeesh!
� For eah step, neessary invariants will needto be de�ned and shown to be preserved� But before we an prove anything, we have todeal with some issues �rst...

25

b Maro-expansion
� First problem... expanding maros� The de�nition of the main funtions in KAS use aLOT of nested maros� Maros are used to generate type delarations, inlinefuntion alls, data strutures, assertions, ...
� In partiular, for inlined funtion alls, I wouldlike to:� Use partial funtions and show that the \expanded"body is equal to unexpanded body� But, for now, I just heat and use a di�erent versionof the maros to avoid some of the expansion

26

b More Compliations...
� Part of KAS is the exeution of user-de�nedsieve funtions� These sieve funtions an produe side e�ets on thelogi stateÆ Side e�ets are limited in order to ensure no impaton soundness� De�ne a \generi" version of KAS with an enapsu-lated user-sieve funtionÆ Unfortunately, while side e�ets will not e�et sound-ness, they an impat equivalene
� Intrinsi limitation: KAS redues ground termsusing evaluation� Need an axiom equating ev-fnall-w with my-evlif funtion de�ned in my-evlÆWell, we atually need ev-fnall-w in the logi �rst

27

b Proving KAS terminates
� Well, rewriting in general is not guaranteed toterminate...� Not a problem for soundness, sine we an just keep amaximum rewrite ounter whih will derease with everyrule appliationÆ Ok, not that easy, beause we don't want this ounterto derease when rewrite subterms, so, a lexial pair ofnode and lok� But, we also have a lot of reursion through\data strutures"� This would require arrying along a signi�ant invari-ant for the stobjs whih would be a signi�ant headahefor termination proofs, exept...� I purposely designed all traversals to have stritlydereasing values for all \pointers"Æ Guarded by an eÆient hek whih will throw anerror dynamially if the pointers do not satisfy require-ment

28

b De�ning Intermediate Models - 1
� Inrementally redue KAS de�nition to a sim-pler rewriter whih we ould prove easily to besound� Possible \steps" in redution:
� Un-inline inlined funtion alls� Map paked data strutures to lists stored in ls� Map pointer indexes into lists (primarily transformnodes to terms)Æ Here, we also deal with replaing node= with equal
ÆWe also have to prove we safely relaim \junk" nodes
� Map bit-paked data into lists (mainly sets)
� This ends the proof of the translation from\C" to LISP 29

b De�ning Intermediate Models - 2
� We now ould ontinue the proess at algo-rithmi level:
� Remove memo-table
� Remove undo-stak
� Remove ontextual memoization
� ... and so on ...Æ We also now must swith from proving equal toproving my-eqv
� Well, I deided to stop de�ning intermediatemodels one I �nished C-to-LISP translation� The C-to-LISP steps will be automatially de�ned,algorithmi intermediate models would need to be main-tained

30

b Guard Veri�ation?
� Honestly, I have not even started on this one..� Main KAS funtions make liberal use of typedelarations (mainly fixnum delares)� My hope is that most of the invariant proof work inC-to-LISP translation steps will help disharge most ofthe guard proof obligations� But, this is mainly a hope, beause I am fully awarethat the \edge" ases whih ome up in proving fixnumguards an easily turn into signi�ant invariant de�nitionand proof obligations� When I get to proving guards, I will probablymake modify the de�nition of some KAS fun-tions to try and \loalize" the guard proofs asmuh as possible

31

b Conlusions and Questions/Disussion
� \Development" of main KAS routines has sta-bilized� I have run out of ideas on how to further mangle theode� Still working on appliations
� I have ompleted about 60 perent of thesoundness proof work� Questions?
� First question: Rob, did you �nd any bugs?
� Final omment: this is still fun!

32

