
1/22

Solving and Verifying Hard Problems using SAT

Marijn J.H. Heule



2/22

SAT Solving and Verification

Solving Framework for Hard Problems

The Future: Verified SAT via Proofs



3/22

SAT Solving and Verification



4/22

Satisfiability (SAT) solving has many applications

formal verification

planning

graph theory

number theory

bioinformatics

cryptography

train safety

rewrite termination

encode decodeSAT solver



5/22

A Small Satisfiability (SAT) Problem

(x5 ∨ x8 ∨ x̄2) ∧ (x2 ∨ x̄1 ∨ x̄3) ∧ (x̄8 ∨ x̄3 ∨ x̄7) ∧ (x̄5 ∨ x3 ∨ x8) ∧
(x̄6 ∨ x̄1 ∨ x̄5) ∧ (x8 ∨ x̄9 ∨ x3) ∧ (x2 ∨ x1 ∨ x3) ∧ (x̄1 ∨ x8 ∨ x4) ∧
(x̄9 ∨ x̄6 ∨ x8) ∧ (x8 ∨ x3 ∨ x̄9) ∧ (x9 ∨ x̄3 ∨ x8) ∧ (x6 ∨ x̄9 ∨ x5) ∧
(x2 ∨ x̄3 ∨ x̄8) ∧ (x8 ∨ x̄6 ∨ x̄3) ∧ (x8 ∨ x̄3 ∨ x̄1) ∧ (x̄8 ∨ x6 ∨ x̄2) ∧
(x7 ∨ x9 ∨ x̄2) ∧ (x8 ∨ x̄9 ∨ x2) ∧ (x̄1 ∨ x̄9 ∨ x4) ∧ (x8 ∨ x1 ∨ x̄2) ∧
(x3 ∨ x̄4 ∨ x̄6) ∧ (x̄1 ∨ x̄7 ∨ x5) ∧ (x̄7 ∨ x1 ∨ x6) ∧ (x̄5 ∨ x4 ∨ x̄6) ∧
(x̄4 ∨ x9 ∨ x̄8) ∧ (x2 ∨ x9 ∨ x1) ∧ (x5 ∨ x̄7 ∨ x1) ∧ (x̄7 ∨ x̄9 ∨ x̄6) ∧
(x2 ∨ x5 ∨ x4) ∧ (x8 ∨ x̄4 ∨ x5) ∧ (x5 ∨ x9 ∨ x3) ∧ (x̄5 ∨ x̄7 ∨ x9) ∧
(x2 ∨ x̄8 ∨ x1) ∧ (x̄7 ∨ x1 ∨ x5) ∧ (x1 ∨ x4 ∨ x3) ∧ (x1 ∨ x̄9 ∨ x̄4) ∧
(x3 ∨ x5 ∨ x6) ∧ (x̄6 ∨ x3 ∨ x̄9) ∧ (x̄7 ∨ x5 ∨ x9) ∧ (x7 ∨ x̄5 ∨ x̄2) ∧
(x4 ∨ x7 ∨ x3) ∧ (x4 ∨ x̄9 ∨ x̄7) ∧ (x5 ∨ x̄1 ∨ x7) ∧ (x5 ∨ x̄1 ∨ x7) ∧
(x6 ∨ x7 ∨ x̄3) ∧ (x̄8 ∨ x̄6 ∨ x̄7) ∧ (x6 ∨ x2 ∨ x3) ∧ (x̄8 ∨ x2 ∨ x5)

Does there exist an assignment satisfying all clauses?



6/22

Search for a satisfying assignment (or proof none exists)

(x5 ∨ x8 ∨ x̄2) ∧ (x2 ∨ x̄1 ∨ x̄3) ∧ (x̄8 ∨ x̄3 ∨ x̄7) ∧ (x̄5 ∨ x3 ∨ x8) ∧
(x̄6 ∨ x̄1 ∨ x̄5) ∧ (x8 ∨ x̄9 ∨ x3) ∧ (x2 ∨ x1 ∨ x3) ∧ (x̄1 ∨ x8 ∨ x4) ∧
(x̄9 ∨ x̄6 ∨ x8) ∧ (x8 ∨ x3 ∨ x̄9) ∧ (x9 ∨ x̄3 ∨ x8) ∧ (x6 ∨ x̄9 ∨ x5) ∧
(x2 ∨ x̄3 ∨ x̄8) ∧ (x8 ∨ x̄6 ∨ x̄3) ∧ (x8 ∨ x̄3 ∨ x̄1) ∧ (x̄8 ∨ x6 ∨ x̄2) ∧
(x7 ∨ x9 ∨ x̄2) ∧ (x8 ∨ x̄9 ∨ x2) ∧ (x̄1 ∨ x̄9 ∨ x4) ∧ (x8 ∨ x1 ∨ x̄2) ∧
(x3 ∨ x̄4 ∨ x̄6) ∧ (x̄1 ∨ x̄7 ∨ x5) ∧ (x̄7 ∨ x1 ∨ x6) ∧ (x̄5 ∨ x4 ∨ x̄6) ∧
(x̄4 ∨ x9 ∨ x̄8) ∧ (x2 ∨ x9 ∨ x1) ∧ (x5 ∨ x̄7 ∨ x1) ∧ (x̄7 ∨ x̄9 ∨ x̄6) ∧
(x2 ∨ x5 ∨ x4) ∧ (x8 ∨ x̄4 ∨ x5) ∧ (x5 ∨ x9 ∨ x3) ∧ (x̄5 ∨ x̄7 ∨ x9) ∧
(x2 ∨ x̄8 ∨ x1) ∧ (x̄7 ∨ x1 ∨ x5) ∧ (x1 ∨ x4 ∨ x3) ∧ (x1 ∨ x̄9 ∨ x̄4) ∧
(x3 ∨ x5 ∨ x6) ∧ (x̄6 ∨ x3 ∨ x̄9) ∧ (x̄7 ∨ x5 ∨ x9) ∧ (x7 ∨ x̄5 ∨ x̄2) ∧
(x4 ∨ x7 ∨ x3) ∧ (x4 ∨ x̄9 ∨ x̄7) ∧ (x5 ∨ x̄1 ∨ x7) ∧ (x5 ∨ x̄1 ∨ x7) ∧
(x6 ∨ x7 ∨ x̄3) ∧ (x̄8 ∨ x̄6 ∨ x̄7) ∧ (x6 ∨ x2 ∨ x3) ∧ (x̄8 ∨ x2 ∨ x5)

Solutions are easy to verify, but what about unsatisfiability?



7/22

Motivation for validating unsatisfiability proofs

Satisfiability solvers are used in amazing ways...

I Hardware and software verification (Intel and Microsoft)
I Hard-Combinatorial problems:

I van der Waerden numbers
[Dransfield, Marek, and Truszczynski, 2004; Kouril and Paul, 2008]

I Gardens of Eden in Conway’s Game of Life
[Hartman, Heule, Kwekkeboom, and Noels, 2013]

I Erdős Discrepancy Problem [Konev and Lisitsa, 2014]

..., but satisfiability solvers have errors and only return yes/no.

I Documented bugs in SAT, SMT, and QBF solvers
[Brummayer and Biere, 2009; Brummayer et al., 2010]

I Implementation errors often imply conceptual errors

I Mathematical results require a stronger justification than a
simple yes/no by a solver. UNSAT must be checkable.



8/22

Clausal Proof System [Järvisalo, Heule, and Biere 2012]

F

Learn: add a clause
* Preserve satisfiability

Forget: remove a clause
* Preserve unsatisfiablity

Satisfiable
* Forget last clause

Unsatisfiable
* Learn empty clause

init



9/22

Ideal Properties of a Proof System for SAT Solvers

Easy to Emit

Compact

Checked Efficiently

Expressive

Resolution Proofs
Zhang and Malik, 2003

Van Gelder, 2008; Biere, 2008

Clausal Proofs
Goldberg and Novikov, 2003

Van Gelder, 2008

Clausal proofs + clause deletion
Heule, Hunt, Jr., and Wetzler [STVR 2014]

Optimized clausal proof checker
Heule, Hunt, Jr., and Wetzler [FMCAD 2013]

Clausal RAT proofs
Heule, Hunt, Jr., and Wetzler [CADE 2013]

DRAT proofs (RAT + deletion)
Wetzler, Heule, and Hunt, Jr. [SAT 2014]



9/22

Ideal Properties of a Proof System for SAT Solvers

Easy to Emit

Compact

Checked Efficiently

Expressive

Verified

Resolution Proofs
Zhang and Malik, 2003

Van Gelder, 2008; Biere, 2008

Clausal Proofs
Goldberg and Novikov, 2003

Van Gelder, 2008

Clausal proofs + clause deletion
Heule, Hunt, Jr., and Wetzler [STVR 2014]

Optimized clausal proof checker
Heule, Hunt, Jr., and Wetzler [FMCAD 2013]

Clausal RAT proofs
Heule, Hunt, Jr., and Wetzler [CADE 2013]

DRAT proofs (RAT + deletion)
Wetzler, Heule, and Hunt, Jr. [SAT 2014]



10/22

Solving Framework for
Hard-Combinatorial Problems



11/22

Overview of Solving Framework

1: encode 2: transform 3: split 4: solve

5: validate

cubes

encoder

original
formula

transformed
formula

transform
proof

tautology
proof

cube
proofs



12/22

Case Study: Pythagorean Triples Problem [Graham 1980]

Can the set of natural numbers {1, 2, 3, . . . } be partitioned
into two parts such that no part contains a Pythagorean triple
(a, b, c ∈ N with a2 + b2 = c2)?

A computer program can partition the first several thousands
numbers ({1, . . . , 7664}) [Cooper and Overstreet 2015].

A partition into two parts is encoded using Boolean variables
xi with i ∈ {1, 2, 3, . . . , n} such that xi = 1 (= 0) means that
i occurs in Part 1 (Part 2). For each Pythagorean triple
(a, b, c) two clauses are added: (xa ∨ xb ∨ xc) ∧ (x̄a ∨ x̄b ∨ x̄c).

Theorem (Main result via parallel SAT solving)

[1, 7824] can be partitioned into two parts, such that no part
contains a Pythagorean triple. This is impossible for [1, 7825].



13/22

Highlight: Phase 2

1: encode 2: transform 3: split 4: solve

5: validate

cubes

encoder

original
formula

transformed
formula

transform
proof

tautology
proof

cube
proofs



14/22

Phase 2: Transform

Input: original CNF formula

Output: transformed CNF formula and a transformation proof

Goal: optimize the formula regarding the later (solving) phases

We applied two transformations (realized via blocked clauses):

I Pythagorean Triple Elimination removes Pythagorean
Triples that contain an element that does not occur in any
other Pythagorean Triple, e.g. 32 + 42 = 52. (till fixpoint)

I Symmetry breaking places the number most frequently
occurring in Pythagorean triples (2520) in Part 1 (encode).

All transformation (pre-processing) techniques can be
expressed using RAT steps [Järvisalo, Heule, and Biere 2012].



15/22

Phase 2: Blocked Clauses [Kullmann’99]

Definition (Blocking literal)

A literal l in a clause C of a CNF F blocks C w.r.t. F if
for every clause D ∈ Fl̄ , the resolvent (C \ {l}) ∪ (D \ {l̄})
obtained from resolving C and D on l is a tautology.

With respect to a fixed CNF and its clauses we have:

Definition (Blocked clause)

A clause is blocked if it contains a literal that blocks it.

Example (Blocking literals and blocked clauses)

Consider the formula (a ∨ b) ∧ (a ∨ b̄ ∨ c̄) ∧ (ā ∨ c).
First clause is not blocked.
Second clause is blocked by both a and c̄.
Third clause is blocked by c.

Proposition

Removal of an arbitrary blocked clause preserves unsatisfiability.



15/22

Phase 2: Blocked Clauses [Kullmann’99]

Definition (Blocking literal)

A literal l in a clause C of a CNF F blocks C w.r.t. F if
for every clause D ∈ Fl̄ , the resolvent (C \ {l}) ∪ (D \ {l̄})
obtained from resolving C and D on l is a tautology.

With respect to a fixed CNF and its clauses we have:

Definition (Blocked clause)

A clause is blocked if it contains a literal that blocks it.

Example (Blocking literals and blocked clauses)

Consider the formula (a ∨ b) ∧ (a ∨ b̄ ∨ c̄) ∧ (ā ∨ c).
First clause is not blocked.
Second clause is blocked by both a and c̄.
Third clause is blocked by c.

Proposition

Removal of an arbitrary blocked clause preserves unsatisfiability.



15/22

Phase 2: Blocked Clauses [Kullmann’99]

Definition (Blocking literal)

A literal l in a clause C of a CNF F blocks C w.r.t. F if
for every clause D ∈ Fl̄ , the resolvent (C \ {l}) ∪ (D \ {l̄})
obtained from resolving C and D on l is a tautology.

With respect to a fixed CNF and its clauses we have:

Definition (Blocked clause)

A clause is blocked if it contains a literal that blocks it.

Example (Blocking literals and blocked clauses)

Consider the formula (a ∨ b) ∧ (a ∨ b̄ ∨ c̄) ∧ (ā ∨ c).
First clause is not blocked.
Second clause is blocked by both a and c̄.
Third clause is blocked by c.

Proposition

Removal of an arbitrary blocked clause preserves unsatisfiability.



16/22

Phase 2: Blocked Clause Elimination (BCE)

Definition (BCE)

While a clause C in a formula F is blocked, remove C from F .

Example (BCE)

Consider (a ∨ b) ∧ (a ∨ b̄ ∨ c̄) ∧ (ā ∨ c).
After removing either (a ∨ b̄ ∨ c̄) or (ā ∨ c), the clause
(a ∨ b) becomes blocked (no clause with either b̄ or ā).
An extreme case in which BCE removes all clauses!

Example (Pythagorean Triples)

The clauses (x3 ∨ x4 ∨ x5) and (x̄3 ∨ x̄4 ∨ x̄5) are blocked in
F7824 and F7825 (actually in any Fn).
BCE (F7824) has 3740 variables and 14652 clauses, and
BCE (F7825) has 3745 variables and 14672 clauses.

BCE can simulate many high-level reasoning techniques.
[Järvisalo, Biere, and Heule 2010]



17/22

Highlight: Phase 5

1: encode 2: transform 3: split 4: solve

5: validate

cubes

encoder

original
formula

transformed
formula

transform
proof

tautology
proof

cube
proofs



18/22

Phase 5: Validate Pythagorean Triples Proofs.

5: validate

original
formula

transform
proof

tautology
proof

cube
proofs

We check the proofs with the DRAT-trim checker, which has
been used to validate the UNSAT results of the international
SAT Competitions since 2013.

Recently it was shown how to validate DRAT proofs in
parallel [Heule and Biere 2015].

The size of the merged proof is almost 200 terabyte and has
been validated in 16,000 CPU hours.



19/22

The Future:
Verified SAT via Proofs



20/22

Next Step: Verify the Proof Checker

Since 2013 all results of the SAT Competitions are validated.
The main question asked: can you verify the checker?

The verified RAT checker [Wetzler, Heule, and Hunt 2013] is
too slow for practical use (say 1000× slower compared to C).

The ACL2 theorem prover allows implementing (and verifying)
a checker that is only about 60% slower compared to C.

Nathan Wetlzer started to work on this during his PhD thesis,
but still quite some work is required.



21/22

Second Next Step: Verified SAT Solving

Question: Would it be possible to implement a fast
mechanically-verified SAT solver?

SAT solvers are constantly being improved using a vast amount
of complex techniques making mechanical verification hard.

However, given a fast mechanically-verified proof checker, SAT
solver implementations do not have to be verified.

SAT solver can simply be used as an oracle to produce proofs.



22/22

Future: Combining it all to have proofs for hard problems

Next steps in verified SAT solving:

I Develop a fast mechanically-verified, clausal proof checker;

I Implement a fast, proof-producing SAT solving in ACL2.

Integrate the solving framework in a theorem prover:

I Show that the encoding of problems into SAT is correct;

I Show the correctness of clausal proof decomposition.

Apply our solving framework to various hard problems:

I Obtain and verify a proof for Radziszowski’s and McKay’s
big result [1995] in Ramsey Theory: R(4, 5) = 25;

I Century-old open problems appear solvable now, such as
Schur number S(5).

Thanks!



22/22

Future: Combining it all to have proofs for hard problems

Next steps in verified SAT solving:

I Develop a fast mechanically-verified, clausal proof checker;

I Implement a fast, proof-producing SAT solving in ACL2.

Integrate the solving framework in a theorem prover:

I Show that the encoding of problems into SAT is correct;

I Show the correctness of clausal proof decomposition.

Apply our solving framework to various hard problems:

I Obtain and verify a proof for Radziszowski’s and McKay’s
big result [1995] in Ramsey Theory: R(4, 5) = 25;

I Century-old open problems appear solvable now, such as
Schur number S(5).

Thanks!


	SAT Solving and Verification
	Solving Framework for Hard Problems
	The Future: Verified SAT via Proofs

