DFT and FFT implementations and proofs using ACL2

Mertcan Temel
What is Fourier Transform?

• Decomposition of a signal into the frequencies that make it up

• Applications include:
 • Differential/Difference Eqs, Filter Design, Speech Recognition, Fast Large Integer Multiplication...

• 3 main types:
 • Continuous Time Fourier Transform (CTFT)
 • Input: Continuous, Output: Continuous
 • Discrete Time Fourier Transform (DTFT)
 • Input: Discrete, Output: Continuous
 • Discrete Fourier Transform (DFT)
 • Input: Discrete, Output: Discrete
 • The one we are interested in
 • Fast Fourier Transform (FFT): some efficient algorithms to compute DFT
What is Discrete Fourier Transform (DFT)?

\[X_k = \sum_{m=0}^{N-1} x_m e^{-j2\pi mk/N} \]

DFT

\[x_m = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{j2\pi mk/N} \]

Inverse DFT (IDFT)

x: input vector of finite length N

\(x_m \): mth element of x

X: output vector of the same length N

\(X_k \): kth element of X

j: square root of -1

DFT Implementation:

- Calculate the sum over \(m \) from 0 to N-1 for every \(k \) in \([0 \text{ N-1}]\)
- Time complexity of \(O(N^2) \)
What is Fast Fourier Transform (FFT)?

• An efficient implementation of DFT

• Two most commonly known ways:
 • Decimation-in-time (DIT)
 • Decimation-in-frequency (DIF)

• Restriction: vector length N should be power of 2. If not, fill with 0s.

• A recursive algorithm
What is Fast Fourier Transform (FFT)?

- \(W_N^m = e^{-j2\pi m/N} \)
- Decimation-in-time
- Recursive definition with base N=2
- N=2 step is also called butterfly step
- Time complexity of \(O(N\log(N)) \)

\[
\begin{align*}
X_0 &= G_0 + H_0 \cdot W_N^0 \\
X_1 &= G_1 + H_1 \cdot W_N^1 \\
X_2 &= \ldots
\end{align*}
\]

\[
\begin{align*}
X_{N/2} &= \ldots \\
X_{N/2+1} &= \ldots \\
X_{N/2+2} &= \ldots
\end{align*}
\]

\[
\begin{align*}
X_0 &= G_0 + H_0 \cdot W_N^0 \\
X_1 &= G_1 + H_1 \cdot W_N^1 \\
X_2 &= \ldots
\end{align*}
\]

\[
\begin{align*}
X_{N/2} &= \ldots \\
X_{N/2+1} &= \ldots \\
X_{N/2+2} &= \ldots
\end{align*}
\]
Work Done in ACL2

• DFT Implementation
 • Proof for (idft (dft x N) N) = x

• FFT decimation-in-time implementation
 • Proof for (fft x N) = (dft x N)
DFT Implementation in ACL2

\[X_k = \sum_{m=0}^{N-1} x_m e^{-j2\pi mk/N} \]

DFT

\[x_m = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{j2\pi mk/N} \]

Inverse DFT (IDFT)

(defun dft_sum (x N k m)
 (declare (xargs :measure (nfix (- N m))))
 (if (zp (- N m))
 0
 (+ (* (number-fix (nth m x))
 (exp- (* #c(0 1)
 2
 (PI-)
 m
 -1
 k
 (/ N))))
 (dft_sum x N k (+ m 1))))))

(defun dft_eachk (x N k)
 (declare (xargs :measure (nfix (- n k))))
 (if (zp (- N k))
 nil
 (cons (dft_sum x N k 0)
 (dft_eachk x N (1+ k))))))

(defun dft (x N)
 (dft_eachk x N 0))
Proof for IDFT of DFT of X is X

Goal:
Prove that inverse DFT of DFT of a vector gives the original vector.
i.e. (idft (dft x)) = x?

ACL2 theorem:

```
(DEFTHM IDFT-OF-DFT-OF-X-IS-X
  (IMPLIES (AND (ACL2-NUMBER-LISTP X)
                 (EQUAL N (LEN X)))
            (EQUAL (IDFT (DFT X N) N) X)))
```
Proof for IDFT of DFT of X is X - Steps

Step 1: Plug DFT sum into IDFT sum. 3 variables: p, q, and m

$$\frac{1}{N} \sum_{q=0}^{N-1} \left(\sum_{p=0}^{N-1} x_p e^{-j2\pi qp/N} \right) e^{j2\pi mq/N}$$

Step 2: Merge exponentials

$$\frac{1}{N} \sum_{q=0}^{N-1} \sum_{p=0}^{N-1} x_p e^{-j2\pi qp + j2\pi mq/N}$$
Proof for IDFT of DFT of X is X - Steps

Step 2: Merge exponentials

\[
\frac{1}{N} \sum_{p=0}^{N-1} \sum_{q=0}^{N-1} x_p e^{-j2\pi qp + j2\pi mq/N}
\]

Step 3: Change summation order

\[
\frac{1}{N} \sum_{p=0}^{N-1} \sum_{q=0}^{N-1} x_p e^{j2\pi q(m-p)/N}
\]
Proof for IDFT of DFT of X is X - Steps

Step 3: Change summation order

\[
\frac{1}{N} \sum_{p=0}^{N-1} \sum_{q=0}^{N-1} x_p e^{j2\pi q(m-p)/N}
\]

Step 4: Take \(x_p\) out

\[
\frac{1}{N} \sum_{p=0}^{N-1} x_p \sum_{q=0}^{N-1} e^{j2\pi q(m-p)/N}
\]
Proof for IDFT of DFT of X is X - Steps

Step 4: Take \(x_p \) out

\[
\frac{1}{N} \sum_{p=0}^{N-1} x_p \sum_{q=0}^{N-1} e^{j2\pi q(m-p)/N}
\]

Step 5: Take \(1/N \) in

\[
\sum_{p=0}^{N-1} x_p \left(\frac{1}{N} \sum_{q=0}^{N-1} 1 \ast e^{j2\pi q(m-p)/N} \right)
\]
Proof for IDFT of DFT of X is X - Steps

Step 5: Take $1/N$ in

$$
\sum_{p=0}^{N-1} x_p \left(\frac{1}{N} \sum_{q=0}^{N-1} 1 \ast e^{j2\pi q(m-p)/N} \right)
$$

Step 6: Rewrite impulse from idft of ones

$$
\sum_{p=0}^{N-1} x_p \delta[m - p]
$$

where

$$
\delta[a] = \begin{cases}
1, & a = 0 \\
0, & a \neq 0
\end{cases}
$$
Proof for IDFT of DFT of X is X - Steps

Step 6: Rewrite impulse from idft of ones

\[
\sum_{p=0}^{N-1} x_p \delta[m - p]
\]

where

\[
\delta[a] = \begin{cases}
1, & a = 0 \\
0, & a \neq 0
\end{cases}
\]

Step 7: Equate the term to \(x_m\). This concludes the proof.
FFT Implementation in ACL2

- where $W_N^m = e^{-j2\pi m/N}$
- Recursively calculate N/2 point FFTs of even and odd indices
- Perform $G + H*W$ over each element
 (G and H values are used twice)
FFT Implementation in ACL2

(defun fft2-dit-multi (G H i N)
 (declare (xargs :measure (nfix (- N i))))
 (if (zp (- N i))
 nil
 (let ((j (if (>= i (/ N 2)) (- i (/ N 2)) i)))
 (cons (+ (number-fix (nth j G))
 (* (number-fix (nth j H))
 (WNk i N)))
 (fft2-dit-multi G H (1+ i) N))))

(defun fft2-dit (x N)
 (declare (xargs :measure (if (> N 1) (floor N 1/2) 0)))
 (if (or (not (integerp N)) (<= N 1))
 (list (number-fix (car x)))
 (let ((evenfft (fft2-dit (getevens x) (/ N 2)))
 (oddffft (fft2-dit (getodds x) (/ N 2)))
 (fft2-dit-multi evenfft oddfft 0 N))))
Proof for FFT is DFT

• Basic idea of FFT:
 • Get rid of redundant/repeated multiplications
 • Remember intermediate results

• Different derivations for Decimation-in-time (DIT) and Decimation-in-frequency (DIF). Only DIT will be discussed here.

• ACL2 Theorem:

\[
\text{(DEFTHM DFT-IS-FFT-DIT)}
\text{(IMPLIES (POWER-OF-2 N) (EQUAL (DFT X N) (FFT2-DIT X N)))}
\]
Proof for FFT is DFT - Steps

DFT formula:

\[X_k = \sum_{n=0}^{N-1} x_n e^{-j2\pi nk/N} \]

Step 1: Divide into two summations

\[X_k = \sum_{n=0}^{N/2-1} x_{2n} e^{-j2\pi (2n)k/N} + \sum_{n=0}^{N/2-1} x_{2n+1} e^{-j2\pi (2n+1)k/N} \]
Proof for FFT is DFT - Steps

Step 1: Divide into two summations

\[X_k = \sum_{n=0}^{N/2-1} x_{2n} e^{-j2\pi(2n)k/N} + \sum_{n=0}^{N/2-1} x_{2n+1} e^{-j2\pi(2n+1)k/N} \]

Step 2: Distribute and commute constants

\[X_k = \sum_{n=0}^{N/2-1} x_{2n} e^{-j2\pi k/(N/2)} + \sum_{n=0}^{N/2-1} x_{2n+1} e^{-j2\pi kn/(N/2)} e^{-j2\pi k/N} \]
Proof for FFT is DFT - Steps

Step 2: Distribute and commute constants

\[X_k = \sum_{n=0}^{N/2-1} x_{2n} e^{-j2\pi k/(N/2)} + \sum_{n=0}^{N/2-1} x_{2n+1} e^{-j2\pi kn/(N/2)} e^{-j2\pi k/N} \]

Step 3: Take the constant exponential out

\[X_k = \sum_{n=0}^{N/2-1} x_{2n} e^{-j2\pi k/(N/2)} + (e^{-j2\pi k/N}) \sum_{n=0}^{N/2-1} x_{2n+1} e^{-j2\pi kn/(N/2)} \]
Step 3: Take the constant exponential out

\[X_k = \sum_{n=0}^{N/2-1} x_{2n} e^{-j2\pi k/(N/2)} + (e^{-j2\pi k/N}) \sum_{n=0}^{N/2-1} x_{2n+1} e^{-j2\pi kn/(N/2)} \]

Observation 1:

\[X_k = (N/2 \text{ point DFT of evens } x) + (e^{-j2\pi k/N}) \ast (N/2 \text{ point DFT of odds } x) \]

Observation 2:

N point DFT is periodic with N (i.e. \(X_k = X_{k+N} \))
Proof for FFT is DFT - Steps

Observation 1:
\[X_k = (N/2 \text{ point DFT of evens } x) + (e^{-j2\pi k/N}) \times (N/2 \text{ point DFT of odds } x) \]

Observation 2: N point DFT is periodic with N (i.e. \(X_k = X_{k+N} \))

\[\Rightarrow 1^{\text{st}} \text{ and } 2^{\text{nd}} \text{ DFTs give the same result for } k \text{ and } k+N/2 \]
\[\text{ (e.g. evendft}(x)_k = \text{evendft}(x)_{k+N/2}) \]

\[\Rightarrow \text{Instead of calculating separately for all } k \in [0 \text{ N-1}], \]
\[\text{calculate } 1^{\text{st}} \text{ and } 2^{\text{nd}} \text{ DFTs for } k \in [0 \text{ N/2-1}] \]
\[\text{remember and use those values twice for } k \text{ and } k+N/2 \]

Applying these concludes the proof.
Future Work

Implement this FFT web,
- in the DE system in ACL2
- as a self-timed, asynchronous circuit