
Verifying Filesystem Data Structure Properties
Using a FAT32-like filesystem organisation

Mihir Mehta

Department of Computer Science
University of Texas at Austin

mihir@cs.utexas.edu

06 April, 2018

1/26



2/26

Outline

Introduction

Analysing and modelling the problem

The proofs

Future work, related work and conclusion



3/26

Outline

Introduction

Analysing and modelling the problem

The proofs

Future work, related work and conclusion



4/26

Why we need a verified filesystem

I Ubiquity of filesystems, even as operating systems move
towards making them invisible

I Increasing complexity of modern filesystems and the tools
which analyse and recover data

I Inadequacy of POSIX, especially for anything low-level

I Opportunity to formally verify guarantees claimed by these
filesystems and tools



5/26

Why FAT32?

I Officially supported by Windows in the past and still used in
USB thumb drives and the like

I Relatively simple, without journalling or transactions

I Supports, for example, nested subdirectories and long
filenames

I Tractable from verification standpoint, and yet capable of
providing a basis for verification of more complex filesystems



6/26

Verification task

A formal model of FAT32 must have

I A file allocation table - this serves as a linked list for contents
of regular files and directories X

I Clusters (a.k.a. extents) - groups of adjacent sectors, read
and written all at once

I Metadata for regular files and directories

I Error codes, to signify insufficient space and the like X



7/26

Outline

Introduction

Analysing and modelling the problem

The proofs

Future work, related work and conclusion



8/26

Verifying through refinement

I Intuition - start simply, instead of modelling all filesystem
features at once

I Justification - reasoning about input/output behaviour of a
complex system is hard, but an equivalent approach is to
reason about the input/output behaviour of a simple system,
and prove the complex system implements (Abadi, 1991) the
simple system

I Definition - For a pair of transition systems S1 and S2, S1 is
said to implement S2 if every externally visible behaviour
allowed by S1 is also allowed by S2.

I One way of proving this implementation relation - finding a
refinement mapping, which maps each (state, transition) pair
of S1 to a legal (state, transition) pair of S2.



9/26

Models and their features

The filesystem is modelled iteratively, incrementally adding
features of FAT32.

1. Filesystem represented as a tree - leaf nodes for regular files
and non-leaf nodes for directories; regular file contents
represented as ACL2 strings; unbounded storage

2. Length added as metadata for each regular file

3. Regular file contents divided into blocks of fixed size, which
are stored in an external ”disk” data structure of unbounded
size

4. Disk size bounded; allocation vector data structure (à la
CP/M) introduced to help allocate and garbage collect blocks

5. Metadata for file ownership and access permissions added for
regular files

6. Allocation vector replaced by file allocation table



10/26

Models and their refinement relationships

L1 - tree

L2 - length

L3 - disk L4 - garbage collection

L5 - permissions L6 - file allocation table



11/26

Modelling a filesystem

I L1 filesystem representation: literal directory tree, in which
non-leaf nodes represent (sub)directories and leaf nodes
represent regular files

I L4 filesystem representation:
I a tree, as above
I a disk, containing the textual contents of regular files broken

into fixed-size blocks;
I and an allocation vector showing which blocks are in use

I L6 filesystem representation:
I a tree, as above
I a disk, as above
I and a file allocation table, mapping each block in a regular file

to the next



12/26

L1 example

/

vmlinuz,”\0\0\0” tmp/

ticket1,”Sun 19:00” ticket2,”Tue 21:00”



13/26

L4 example
/

vmlinuz, (0),3 tmp/

ticket1, (1 2),9 ticket2,(3 4),9

Table: Disk and allocation vector

0 \0\0\0 true

1 Sun 19:0 true

2 0 true

3 Tue 21:0 true

4 0 true

5 false



14/26

L6 example
/

vmlinuz, 2, 3 tmp/

ticket1, 3, 9 ticket2, 5, 9

Table: Disk and file allocation table

0

1

2 \0\0\0 EOC

3 Sun 19:0 4

4 0 EOC

5 Tue 21:0 6

6 0 EOC

7 0



15/26

Conceptualising proofs

I Initial focus on read-over-write properties (more details follow)

I Transition system formulation - filesystem instances (storing
some files and directories with some metadata) become
states, and file operations (reading, writing) become
externally visible actions

I Small number of file operations, consistently named across
models - stat, read, create, write, unlink

I Refinement mappings - simply find functions that map each
instance of a given model to an equivalent instance of a
previously verified model

I Proof burden for L1 (base model) - satisfaction of
read-over-write properties

I Proof burden for L2 (and following models) - mapping from
L2 instances to L1 composes correctly with file operations in
both L2 and L1.



16/26

Outline

Introduction

Analysing and modelling the problem

The proofs

Future work, related work and conclusion



17/26

Verifying the models

I We’ve focussed so far on two filesystem properties, known in
the literature as the read-over-write properties.

1. After a write of some text at some location, a read of the
same length at the same location should yield the text.

2. After a write, a read at a different location should yield the
same results as a read before the write.

I These properties have been proven for all models so far,
including the present model which features a file allocation
table.



18/26

Proof example: first read-over-write in L2

l2 l2

l1 l1

l2-to-l1-fs

write(text)

write(text)

l2-to-l1-fs

Figure: l2-wrchs-correctness-1

l2 text

l1

l2-to-l1-fs

read

read

Figure: l2-rdchs-correctness-1



19/26

Proof example: first read-over-write in L2

l2 l2 text

l1 l1

l2-to-l1-fs

write(text)

write(text)

l2-to-l1-fs

read

read

Figure: l2-read-over-write-1



20/26

Proof challenges

I Invariant choice vital - core of the proof

I Define a ”good state” of a filesystem, from which reading,
writing and other operations can be safely carried out

I Do we make it simple, to help with verification? Do we make
it general, to model as many real-world situations as possible?



21/26

Some choices

For our invariants, we choose to require:

I that each block on the disk is attributed to at most one
regular file (thus excluding hard links and soft links)

I that the clusters attributed to each non-empty regular file end
with a legal EOF value, as defined by the FAT specification
(thus excluding a class of errors)

I that each regular file is annotated with ”length”, a metadata
field that corresponds to the actual length of the file as
determined by traversing the file allocation table and reading
the corresponding blocks (thus adding an extra field of
metadata)



22/26

Where does modelling effort go?

Some expectations while modelling and verifying a filesystem with
external storage:

I Proving exact results about available space on the disk and
whether or not a write operation will succeed

I Proving file operations do not result in ill-formed regular files
or subdirectories

I Defining good abstractions for well-formedness of regular files
and subdirectories, and structuring proof around these
abstractions

I Proving some general lemmata about built-in functions and
later making them compatible with other books

I ”Proof hacking” to reduce the use of the proof builder, use
fewer hints and auxiliary lemmata, and reduce certification
time



23/26

Outline

Introduction

Analysing and modelling the problem

The proofs

Future work, related work and conclusion



24/26

Future work

1. Complete the FAT32 model, by means of
I supporting variable cluster sizes,
I moving the file allocation table onto the disk, and
I moving all file and directory metadata from the tree to the

disk.

2. Validate the model through co-simulation with the Linux
kernel implementation.

3. Model a more complex filesystem, for instance ext4, by
re-using algorithms and proofs from the models built so far.



25/26

Related work

I FSCQ (Chen, 2016) - novel filesystem, proven safe against
crashes using Coq, performs comparably to ext4.

I COGENT (Amani, 2016) - ”verifying compiler” translates
specs in a DSL to C implementations free of some classes of
bugs.

I SibylFS (Ridge, 2015) - ”executable specification” for
filesystem validates or rejects filesystem traces across multiple
OSes.

I Hyperkernel (Nelson, 2017) - xv6 microkernel implemented
with system calls changed to make them constant-time; in
return, verification burden becomes lightweight enough for Z3
SMT solver.

I Our work’s distinct aim: model an existing filesystem (FAT32)
faithfully and match the resulting disk image byte-to-byte.



26/26

Conclusion

I FAT32-adjacent filesystem formalised with a binary
compatible file allocation table

I Read-over-write properties proven by means of refinement
through a series of models


	Introduction
	Analysing and modelling the problem
	The proofs
	Future work, related work and conclusion

