
An Integration of Axiomatic Set Theory with
ACL2

Matt Kaufmann

UT Austin (retired)

April 11, 18, and 25, 2025

1/61

OUTLINE

Introduction

Axioms and Basic Notions

Review of First Talk

Embedding ACL2 in ZFG

Comprehension Scheme via Zsub

Developing More Set Theory

Replacement Scheme via Zfn, with Applications

Zify

Two Classical Examples

Future Work and Wrapping Up

2/61

OUTLINE

Introduction

Axioms and Basic Notions

Review of First Talk

Embedding ACL2 in ZFG

Comprehension Scheme via Zsub

Developing More Set Theory

Replacement Scheme via Zfn, with Applications

Zify

Two Classical Examples

Future Work and Wrapping Up

3/61

OUTLINE

Introduction
General Information
Motivation
About Set Theory and ACL2
Examples

4/61

GENERAL INFORMATION

Thanks to Eric Smith and Kestrel for hosting and recording.
▶ This could kick off an online seminar series....

About this talk:
▶ Talk info is on the seminar page. We’ll go there from the

ACL2 home page and review the abstract.
▶ Please ask questions (with voice, not Zoom chat). NOTE: I

am trying not to assume any background in ZF set theory.
▶ This is work in progress (e.g., no comparison with

Isabelle/ZF or others).

Collaborators are welcome! I’ll mention potential future work.

For more info see :DOC zfc, :DOC zfc-model, and the books:
books/projects/set-theory/.

Books use no trust tags and required no ACL2 changes.
5/61

http://www.cs.utexas.edu/users/moore/acl2/seminar/
http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ZFC
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ZFC-MODEL
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFTTAG

MOTIVATION

Zermelo Fraenkel (ZF) set theory is an established, intuitive
foundation for mathematics.

Personal motivation: Combines my logic background (40 to 50
years ago!) with my current focus, ACL2.
▶ I’ve always been a bit bothered by the built-in ground-zero

theory – ACL2 isn’t a pure first-order prover.

Key new insight last Fall: ACL2 can be a pure set-theory
prover by encoding ACL2 primitives and data into set theory.

Additional motivation: Provides a vehicle for embedding
higher-order logic (HOL) developments into ACL2.
▶ That could be the subject of future talks.

6/61

ABOUT SET THEORY AND ACL2

ACL2 objects are represented as sets.
▶ Natural numbers are Zermelo (von Neumann) ordinals:

0 is the empty set, {};
1 = {0};
2 = {0, 1};
and in general
n = {0, 1, ...,n − 1}.

▶ Other ACL2 objects are encoded as discussed later, e.g.:
▶ Cons is represented using the Kuratowski ordered pair:

(cons x y) = {{x}, {x, y}}
▶ −3 = {0, 1, (3 . 0)}

▶ There are infinite objects but we can’t compute with them,
or with set membership, etc.

Let’s look at this picture from Wikipedia:
Vω∗ω

7/61

https://en.wikipedia.org/wiki/Von_Neumann_universe#/media/File:Von_Neumann_Hierarchy.svg

EXAMPLES

Here we touch on two examples.
Note that these are in the "ZF" package.

▶ Classical set theory example: Cantor’s theorem
(Let’s look briefly at the certifiable book, cantor.lisp);
we’ll revisit it later after providing more background.

▶ “Higher-order function” example: map
▶ We’ll look at (defun map ...) in base.lisp and the

two theorems following it. First note:
▶ In (map f lst), think of f as a set of ordered pairs and

lst as an ACL2 list.
▶ I’ll explain later how (defthmz ... :props ...) can

be viewed as (defthm ...).
▶ We’ll look at zify.lisp to see an application of map to the

Fibonacci function.
▶ Later we may look at foldr.lisp.

8/61

https://en.wikipedia.org/wiki/Cantor%27s_theorem

OUTLINE

Introduction

Axioms and Basic Notions

Review of First Talk

Embedding ACL2 in ZFG

Comprehension Scheme via Zsub

Developing More Set Theory

Replacement Scheme via Zfn, with Applications

Zify

Two Classical Examples

Future Work and Wrapping Up

9/61

OUTLINE

Axioms and Basic Notions
ZFG

10/61

ZFG
Goal: Provide a platform for efficient set-theory reasoning.
▶ The axioms need justification, but need not be minimal.

▶ Example: The Axiom of Infinity of ZF says that there is a set
containing the empty set and closed under the operation
n 7→ n ∪ {n}, but we axiomatize ω to be a specific such set.

ZFG is ZF plus a global choice axiom.

Let’s look at the exports in the first encapsulate form in
base.lisp, up to “Embedding of ACL2 data types”.

▶ Notice the local witness of nil for zfc, which serves as a
hypothesis!

▶ A metatheoretic argument provides a meaningful
interpretation for which (zfc) is true.

▶ Not included there: Comprehension (Subset) or
Replacement (equivalently, Collection) schemes of ZF (to
be discussed later)

11/61

OUTLINE

Introduction

Axioms and Basic Notions

Review of First Talk

Embedding ACL2 in ZFG

Comprehension Scheme via Zsub

Developing More Set Theory

Replacement Scheme via Zfn, with Applications

Zify

Two Classical Examples

Future Work and Wrapping Up

12/61

OUTLINE

Review of First Talk

13/61

This work supports ACL2 as a logic and prover for set theory,
ZFG (Zermelo-Fraenkel with global choice).
In ZFG we define the ACL2 numbers, characters, strings, and
symbols (the good atoms):
▶ Naturals are finite ordinals n = {0, ...,n − 1};
▶ Cons is represented using the Kuratowski ordered pair,

(cons x y) = {{x}, {x, y}};
▶ −3 = {0, 1, (3 . 0)} ;
▶ etc.

For more info see: last week’s slides and talk (links are on the
ACL2 seminar page), :DOC zfc, :DOC zfc-model, and the books
in books/projects/set-theory/.
We’ll look again at the initial encapsulate event in
base.lisp.
It introduces hypothesis function zfc and primitives in, pair,
min-in, union, omega, and powerset, along with subset
and some basic axioms.

14/61

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ZFC
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ZFC-MODEL

OUTLINE

Introduction

Axioms and Basic Notions

Review of First Talk

Embedding ACL2 in ZFG

Comprehension Scheme via Zsub

Developing More Set Theory

Replacement Scheme via Zfn, with Applications

Zify

Two Classical Examples

Future Work and Wrapping Up

15/61

OUTLINE

Embedding ACL2 in ZFG
Logical Overview
Encoding ACL2 Objects in Set Theory

16/61

LOGICAL OVERVIEW

For this work, I view the logical foundation of ACL2 as
first-order set theory, specifically, ZFG.

ZFG is powerful: All built-in ACL2 constants and functions,
e.g. including natp, expt, consp, cons, symbolp, etc. can be
defined in ZFG.

If time and interest permit, I might lay out rigorous details. The
next slide makes a start.

I’ll refer to these foundations — where ACL2 objects are
encoded as sets and ACL2 functions are defined in ZFG — as
our underlying set theory.

17/61

ENCODING ACL2 OBJECTS IN SET THEORY

Let’s look at the rest of that initial encapsulate in
base.lisp to see how ACL2 data type recognizers are defined
— and also at the definitions of relation-p, funp, and
apply after that.

TIP: Note, as in funp, the use of non-exec in defun-sk to
support guard verification.

18/61

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____non-exec
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____defun-sk
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____GUARD

OUTLINE

Introduction

Axioms and Basic Notions

Review of First Talk

Embedding ACL2 in ZFG

Comprehension Scheme via Zsub

Developing More Set Theory

Replacement Scheme via Zfn, with Applications

Zify

Two Classical Examples

Future Work and Wrapping Up

19/61

OUTLINE

Comprehension Scheme via Zsub
Comprehension in ZF
Zsub Example
More Zsub Examples
Zfc-table
Defthmz and :Props
Defthmz Examples
Simplifying Exports from Zsub

20/61

COMPREHENSION IN ZF

The Comprehension (or Subset) scheme of ZF says that the
intersection of a predicate with a set is a set.
▶ Informally: {a ∈ x : P(a)} is a set.
▶ Formal statement, for each formula P with y not free:

∀x∃y∀a(a ∈ y ⇔ (a ∈ x ∧ P))
▶ I’ll call x the bounding set.

21/61

ZSUB EXAMPLE (1)

From base.lisp:
; The following defines the Cartesian product
; (prod2 a b)
; as:
; {p \in (powerset (powerset (union2 a b))) :
; (prod-member p a b)}

(zsub prod2 (a b)
p
(powerset (powerset (union2 a b)))
(prod-member p a b)
)

For Comprehension (and zsub), we always need a bounding set.
Why does (powerset (powerset (union2 a b))) serve
that purpose?

22/61

ZSUB EXAMPLE (2)

Again, why is a× b contained in
(powerset (powerset (union2 a b)))?

Consider the ordered pair {{x}, {x, y}} ∈ a× b, where
x ∈ a and y ∈ b.

Both {x} and {x, y} are subsets of (union2 a b), hence it’s in
(powerset (union2 a b)).

So {{x}, {x, y}} is a subset of (powerset (union2 a b)),
hence it’s in (powerset (powerset (union2 a b))).

23/61

ZSUB EXAMPLE (3)

(zsub prod2 (a b)
p
(powerset (powerset (union2 a b)))
(prod-member p a b)
)

Let’s see how this call of zsub expands, using :trans1 and
focusing on PROD2$COMPREHENSION.

24/61

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TRANS1

MORE ZSUB EXAMPLES

As time permits we’ll take a quick look at more examples in
base.lisp:

domain, inverse, image, compose

25/61

ZFC-TABLE

Recall that the prod2 example above generates:

(TABLE ZFC-TABLE
’PROD2$PROP
’(ZSUB PROD2 (A B)

P
(POWERSET (POWERSET (UNION2 A B)))
(PROD-MEMBER P A B)))

Key property: Every key of zfc-table is a zero-ary function
symbol that returns true in our underlying set theory.

Thus: The table guard of zfc-table checks that
prod2$prop can be assumed to hold by the Comprehension
scheme.

26/61

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TABLE

DEFTHMZ AND :PROPS

Defthmz (here, “z” to suggest “ZF”) is just defthm except for
an extra :props argument.

▶ The value of :props must be a list of keys of zfc-table.

▶ In our underlying set theory, all :props functions are true
— we can ignore them!
▶ After all, adding a bunch of T hypotheses has no logical

effect.

▶ The default value for :props is (zfc).

▶ Defthmdz and thmz similarly extend defthmd and thm
(respectively) with a :props argument.

27/61

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFTHMD
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____THM

DEFTHMZ EXAMPLES

Use :trans1 to look at examples in base.lisp, e.g.,
ordinal-p-omega and in-prod2.

Make-event tips from
:trans1 (CHECK-PROPS DEFTHMZ (ZFC PROD2$PROP)):
▶ TIP: Use :expansion? to avoid bloat in .cert file.
▶ TIP: Use :on-behalf-of :quiet to suppress noisy

output
▶ TIP: Use :check-expansion t to ensure that the check

is made even at include-book time.

28/61

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TRANS1
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CERTIFICATE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____INCLUDE-BOOK

SIMPLIFYING EXPORTS FROM ZSUB

Evaluate :pe prod2$comprehension and compare to
in-prod2.

Let’s look at the proof of in-prod2 (file base.lisp), which
simplifies prod2$comprehension.

29/61

OUTLINE

Introduction

Axioms and Basic Notions

Review of First Talk

Embedding ACL2 in ZFG

Comprehension Scheme via Zsub

Developing More Set Theory

Replacement Scheme via Zfn, with Applications

Zify

Two Classical Examples

Future Work and Wrapping Up

30/61

OUTLINE

Developing More Set Theory
Ordinals
Iterated Composition
De Morgan’s Laws Etc.
Function Spaces
Reasoning about Free Variables and Quantifiers
Transfinite Induction

31/61

ORDINALS
Let’s look at these key events in the section “Omega is an
ordinal” in base.lisp (with “:guard t” omitted).

(defun-sk in-is-linear (s)
(forall (x y) (implies (and (in x s)

(in y s)
(not (equal x y)))

(or (in x y)
(in y x)))))

(defun-sk transitive (x)
(forall a (implies (in a x)

(subset a x)))
:rewrite :direct)

(defun ordinal-p (x)
(and (in-is-linear x)

(transitive x)))
(defthmz ordinal-p-omega (ordinal-p (omega)))

32/61

ORDINALS (CONTINUED)

See ordinals.lisp for a few more theorems about ordinals.
A key result:

(defthmz ordinal-trichotomy
(implies (and (ordinal-p a)

(ordinal-p b)
(not (in a b))
(not (in b a)))

(equal (equal a b)
t))

:props (zfc diff$prop)
:hints ...)

33/61

ITERATED COMPOSITION

See iterate.lisp.

34/61

DE MORGAN’S LAWS ETC.

See set-algebra.lisp, e.g., De Morgan’s Laws.

35/61

FUNCTION SPACES

See fun-space.lisp.

36/61

REASONING ABOUT FREE VARIABLES AND

QUANTIFIERS

Example: see demo1.lsp for a proof of the following theorem
from set-algebra.lisp.

(defthmz domain-union2
(equal (domain (union2 r s))

(union2 (domain r) (domain s)))
:props (zfc domain$prop)
:hints ...)

37/61

FREE VARIABLES AND QUANTIFIERS (CONTINUED)
▶ TIP: Enable extensionality-rewrite to prove two

sets are equal.
▶ TIP: Use :otf-flg t to see all checkpoints.
▶ TIP: Use skip-proofs to formulate lemmas (maybe with

numbering scheme X-i-j-k...) and then see if those suffice.
▶ TIP: When proving a call of subset, open up that call by

enabling subset or expanding that call. This strategy
applies in general for defun-sk using forall. Also see
:DOC quantifier-tutorial.

▶ TIP: Let forcing help you to find missing :props.
▶ TIP: Use proof-builder commands to explore, including

generalize, bash, lisp, and sr (show-rewrites); see
also :DOC proof-builder-commands-short-list.

▶ TIP: Use :pl term (much like using sr in the
proof-builder).

▶ TIP: Accommodate proof-builder rewrites involving free
variables by using :restrict hints.

38/61

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____OTF-FLG
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SKIP-PROOFS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ENABLE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____EXPAND
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFUN-SK
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORALL
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____QUANTIFIER-TUTORIAL
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PROOF-BUILDER
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PROOF-BUILDER-COMMANDS-SHORT-LIST
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PL
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2-PC____SR
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HINTS

TRANSFINITE INDUCTION

Time permitting, we’ll talk about epsilon-induction and look at
the macro prove-inductive-suffices and the examples
below it in induction.lisp.

Transfinite induction on the ordinals is a special case of
epsilon-induction.

39/61

OUTLINE

Introduction

Axioms and Basic Notions

Review of First Talk

Embedding ACL2 in ZFG

Comprehension Scheme via Zsub

Developing More Set Theory

Replacement Scheme via Zfn, with Applications

Zify

Two Classical Examples

Future Work and Wrapping Up

40/61

OUTLINE

Replacement Scheme via Zfn, with Applications
Replacement Application #1: The Cumulative Hierarchy
Replacement in ZF and in ACL2
All Good ACL2 Objects Are in Vω

The Good ACL2 Objects Form a Set
Replacement Example #2: Transitive Closure

41/61

REPLACEMENT APPLICATION #1:
THE CUMULATIVE HIERARCHY

The book base.lisp defines V = {⟨x, y⟩ : x ∈ ω ∧ y = Vmap(x)}
and then Vω =

⋃
{y : {⟨x, y⟩ ∈ V}. [picture]

(defun v-map (n) ; uses ordinary ACL2 recursion!
(declare (type (integer 0 *) n))
(if (zp n)

0
(powerset (v-map (1- n)))))

Let’s take a look using :trans1:
(zfn v () ; name, args

x y ; x, y
(omega) ; bound for x
(equal (equal y (v-map x)) ; relation on x, y

t))

(defun v-omega () ;union of v-map(0), v-map(1), ...
(declare (xargs :guard t))
(union (image (v))))

42/61

https://en.wikipedia.org/wiki/Von_Neumann_universe#/media/File:Von_Neumann_Hierarchy.svg

REPLACEMENT IN ZF AND IN ACL2

The Replacement Scheme of ZF says that a definable mapping
F of a set A produces a set.

Here’s what Wikipedia says, but we’ll look at the picture.
∀w1, . . . ,wn ∀A ([∀x ∈ A∃!yϕ(x, y,w1, . . . ,wn,A)] =⇒

∃B∀y [y ∈ B ⇔ ∃x ∈ Aϕ(x, y,w1, . . . ,wn,A)])

ACL2 modifies the Replacement Scheme as follows. (This
ACL2 version follows easily from the ZF axioms.)
▶ F can associate more than one value with the same input;
▶ the mapping can be undefined on any elements of A; and
▶ the result is a set-theoretic function — a set of ordered

pairs — based on the restriction of F to A.

43/61

https://en.wikipedia.org/wiki/Axiom_schema_of_replacement#/media/File:Axiom_schema_of_replacement.svg

ALL GOOD ACL2 OBJECTS ARE IN Vω

Recognizer for “good ACL2 object”:

(defun acl2p (x)
(declare (xargs :guard t))
(cond ((consp x) (and (acl2p (car x))

(acl2p (cdr x))))
(t (not (bad-atom x)))))

Good ACL2 objects sit in Vω (see base.lisp), which is critical
for the use of zsub on the next slide:

(defthmz v-omega-contains-acl2p
(implies (acl2p x)

(in x (v-omega)))
:props ... :hints ...)

44/61

THE GOOD ACL2 OBJECTS FORM A SET
We’ll use the following notion later (see mirror example).
(acl2) = {x ∈ Vω : acl2p(x)} — see zify.lisp.
(zsub acl2 () ; name, args

x ; the variable
(v-omega) ; the bounding set
(acl2p x)) ; the property

(extend-zfc-table ; Use :trans1 to see expansion.
zify-prop
prod2$prop domain$prop inverse$prop zfc)

(defthmz acl2p-is-acl2
; strengthens acl2$comprehension

(equal (in x (acl2))
(acl2p x))

:props (zify-prop acl2$prop v$prop))

(in-theory (disable acl2$comprehension))
45/61

REPLACEMENT EXAMPLE #2: TRANSITIVE CLOSURE
We’ll mostly skip this slide unless there is time for it.
A set is transitive if every member of a member is a member,
i.e., every member is a subset.

(defun-sk transitive (x)
(declare (xargs :guard t))
(forall a (implies (in a x)

(subset a x)))
:rewrite :direct)

File tc.lisp defines the transitive closure of a set s to be the
least transitive set containing s.
Time permitting, we’ll look at theorems labeled “A key
theorem” in tc.lisp.
Perhaps we’ll also look at the definition of tc in file tc.lisp.

(defun tc-n (n s) ...)
(zfn tc-fn (s) ...)
(defun tc (s) ...)

46/61

OUTLINE

Introduction

Axioms and Basic Notions

Review of First Talk

Embedding ACL2 in ZFG

Comprehension Scheme via Zsub

Developing More Set Theory

Replacement Scheme via Zfn, with Applications

Zify

Two Classical Examples

Future Work and Wrapping Up

47/61

OUTLINE

Zify
Zify Introduction: Revisiting fib
Zify Example: Mirror
Zify*

48/61

ZIFY INTRODUCTION: REVISITING FIB

“Zify” rhymes with “reify” — it turns a unary ACL2 function
into a ZF function (set of ordered pairs).

Look at the fib example in zify.lisp.

:trans1 (zify zfib fib :dom (omega) :ran (omega))

Below is a key part of the zify call above, informally:
(zfib) = {⟨p1, p2⟩ ∈ ω × ω : p2 = fib(p1)}.

(zsub zfib ()
p
(prod2 (omega) (omega))
(equal (cdr p) (fib (car p))))

49/61

ZIFY EXAMPLE: MIRROR (1)

For zify, the defaults for :dom and :ran — the domain and
image (range) — are (acl2), the set of good ACL2 objects.

(defun mirror (x)
(cond ((atom x) x)

(t (cons (mirror (cdr x))
(mirror (car x))))))

(prove-acl2p mirror) ; (ACL2P X) =⇒ (ACL2P (MIRROR X))
(zify zmirror mirror)

Prove-acl2p proves that a given function preserves acl2p
(“good ACL2 object”). See file prove-acl2p.lisp.
▶ :trans* t (prove-acl2p mirror)

▶ TIP: Use :trans* instead of :trans1 when
make-event is involved in the expansion.

50/61

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TRANS_A2
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TRANS1
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____MAKE-EVENT

ZIFY EXAMPLE: MIRROR (2)

Now we can attempt to prove:
(thm (equal (apply (zmirror) ’((a . b) . (c . d)))

’((d . c) . (b . a))))

Fix it using thmz (and show zify-prop):
(thmz (equal (apply (zmirror) ’((a . b) . (c . d)))

’((d . c) . (b . a)))
:props (zify-prop acl2$prop v$prop zmirror$prop))

51/61

ZIFY*

In ZF, every function is unary... (Why?)
because it is a set of ordered pairs ⟨x, y⟩.

Zify* is a variant of zify that can convert arbitrary-arity
ACL2 functions to set-theoretic functions.
▶ The idea is to get a unary function that maps arglists to

values.

You can see zify.lisp for a few examples, but time
permitting we’ll look at foldr in foldr.lisp.

52/61

ZIFY* (CONTINUED)

Let’s take a quick look at the book, foldr.lisp, up through:

(thmz
(implies (acl2p lst)

(equal (foldr lst (zbinary-*) 1)
(timeslist lst)))

:props (foldr-prop zbinary-*$prop acl2$prop))

(thmz
(implies (acl2p lst)

(equal (foldr ’(2 3 5) (zbinary-*) 1)
30))

:props (foldr-prop zbinary-*$prop acl2$prop))

53/61

OUTLINE

Introduction

Axioms and Basic Notions

Review of First Talk

Embedding ACL2 in ZFG

Comprehension Scheme via Zsub

Developing More Set Theory

Replacement Scheme via Zfn, with Applications

Zify

Two Classical Examples

Future Work and Wrapping Up

54/61

OUTLINE

Two Classical Examples
Cantor’s Theorem
The Schröder-Bernstein Theorem

55/61

CANTOR’S THEOREM

See cantor.lisp for a straightforward adaptation of the
formalization and proof on Wikipedia.

Let’s take a quick look — you can read the comments and
events if interested in details.

▶ Note the natural use of zsub to follow the Wikipedia
proof.

▶ TIP: Note the use of minimal-theory for control of the
proof.

▶ TIP: It’s OK to leave proof-builder :instructions when
they’re easily maintainable.

56/61

https://en.wikipedia.org/wiki/Cantor%27s_theorem

THE SCHRÖDER-BERNSTEIN THEOREM

▶ If there is an injective function from A to B and also one
from B to A, then there is a bijection from A to B.

▶ Based on Grant Jurgensen’s ACL2 formalization

▶ We’ll take a quick look at schroeder-bernstein.lisp.
▶ Key idea: Zify the bijection provided by Grant’s result.
▶ Slight wart: Events need to support the :prop, fun-bij,

introduced by that zify call.

▶ TIP: Locally included book *-support.lisp has ugly
details (a technique used earlier in the rtl books and
elsewhere).

▶ TIP: Hand proofs can be helpful; see
schroeder-bernstein-main-2-2 in
schroeder-bernstein-support.lisp.

57/61

OUTLINE

Introduction

Axioms and Basic Notions

Review of First Talk

Embedding ACL2 in ZFG

Comprehension Scheme via Zsub

Developing More Set Theory

Replacement Scheme via Zfn, with Applications

Zify

Two Classical Examples

Future Work and Wrapping Up

58/61

OUTLINE

Future Work and Wrapping Up
Future Work (Highly Incomplete List!)
Wrapping Up

59/61

FUTURE WORK (HIGHLY INCOMPLETE LIST!)
▶ Transfinite recursion, e.g., Vα for all ordinals α
▶ Cardinals, cardinality (in progress)
▶ Higher-order applications (e.g., temporal logics)
▶ Tool improvements, e.g., let zify return :REDUNDANT
▶ More automation

▶ ACL2 modification for parity-based rewriting (or maybe
use existing clause-processor?)

▶ Quantifier instantiation (maybe Dave Greve’s stuff?)
▶ Automated functional instantiation (maybe Joosten et al.’s

2013 workshop paper on instance-of-defspec)
▶ Prove correctness for the embedding of ACL2 into ZFG.
▶ More set theory

▶ ω1 (soon; should be easy using Cantor’s theorem)
▶ Cofinality, closed unbounded subsets, stationary sets
▶ Mostowski collapse
▶ Independence results
▶ . . .

▶ Other math, e.g., basic topology
60/61

WRAPPING UP

Possible PhD dissertation topic(s)?
Collaborators?

Thanks to Eric Smith and Kestrel Institute for recording and
posting these talks.

Thank you for your attention!

61/61

	Introduction
	General Information
	Motivation
	About Set Theory and ACL2
	Examples

	Axioms and Basic Notions
	ZFG

	Review of First Talk
	Embedding ACL2 in ZFG
	Logical Overview
	Encoding ACL2 Objects in Set Theory

	Comprehension Scheme via Zsub
	Comprehension in ZF
	Zsub Example
	More Zsub Examples
	Zfc-table
	Defthmz and :Props
	Defthmz Examples
	Simplifying Exports from Zsub

	Developing More Set Theory
	Ordinals
	Iterated Composition
	De Morgan's Laws Etc.
	Function Spaces
	Reasoning about Free Variables and Quantifiers
	Transfinite Induction

	Replacement Scheme via Zfn, with Applications
	Replacement Application #1: The Cumulative Hierarchy
	Replacement in ZF and in ACL2
	All Good ACL2 Objects Are in V
	The Good ACL2 Objects Form a Set
	Replacement Example #2: Transitive Closure

	Zify
	Zify Introduction: Revisiting fib
	Zify Example: Mirror
	Zify*

	Two Classical Examples
	Cantor's Theorem
	The Schröder-Bernstein Theorem

	Future Work and Wrapping Up
	Future Work (Highly Incomplete List!)
	Wrapping Up

