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1 Introduction

A significant development in high-performance computing has occurred in recent years
with the proliferation of “Beowulf” clusters [6]. Beowulf clusters are parallel comput-
ers assembled from commodity-priced personal computers and networks. The explo-
sive growth of the personal computer marketplace, together with rapid technological
advances in the hardware sold there, has driven the price/performance ratio so low for
Beowulf clusters that they have become competitive with traditional tightly integrated
(and thus expensive) supercomputers.

The current bottleneck is systems software. Small clusters are already working well
in a large variety of situations, as well as large systems devoted to single applications.
To truly compete with highly parallel supercomputer systems, however, Beowulfs need
scalable parallel libraries, system management tools, job schedulers, process managers,
and other systems software to support a mix of users and applications on systems con-
sisting of hundreds of network-connected computers. Traditional systems software
either is not scalable or is tied to specific vendor systems.

The Mathematics and Computer Science Division at Argonne National Laboratory
conducts research and prototype software development in parallel systems software.
The MPICH implementation [2] of the MPI standard for message passing is already
widely used in the Beowulf community. A new project is MPD (for Multi-Purpose Dae-
mon), whose purpose is to explore issues in scalable process management for parallel
jobs on Beowulf clusters. Process management includes process startup, job control,
management of standard I/O (especially for interactive jobs), security, reliable process
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shutdown, and provision of some set of facilities for use by an application-level par-
allel library (such as MPICH) to dynamically establish network connections among
processes. The MPD system as a whole consists of dynamically changing network of
processes. A diagram of one possible state of the system is shown in Figure 1. Details
may be found in [1].
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Figure 1: Daemons with console process, managers, and clients

The prototype implementation of MPD in C has not been easy. Informal reasoning
about dynamically changing parallel systems is difficult. Compounding the problem is
the fact that the software layer on which MPD is built is a low-level-one: it is composed
of C programs that make Unix system calls to manage processes (fork, exec and its
variants, kill, rsh, etc.) to establish TCP connections (socket, bind, listen,
accept, connect, etc.), and to communicate (read and write on sockets) [4].

We decided to bring higher-level tools to bear on the problem and to employ
ACL2 [3] in doing so. This paper describes our experiences so far.

2 Goals of the Project

Our abstract goal was to explore the use of high-level tools in the development of
complex software. What attracted us to this particular project was the fact that the
system we wished to apply the tools to, the MPD process manager, was

1. complex enough that ACL2-based technology might really hasten its develop-
ment and improve its robustness,

2. important enough in the context of Beowulf system software to be worth an
investment in tools, and yet

3. simple enough that we had hope of concrete success. The various MPD processes
themselves have relatively simple structures, in which handlers are attached to
various sockets and invoked when messages arrive to process the messages. Al-
though there are many types of messages and thus many handlers, each one is
relatively straightforward.

The core of the project is a simulator. We hoped that the exercise of defining the
relevant states of (Unix) processes and the state of a system of such processes connected
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by communication channels with the characteristics of Unix sockets would lead us to a
simple data structure that would abstract the significant aspects of the system, enabling
us to effectively reason about it, both informally and formally. The man pages of the
various Unix system calls would be abstracted into the simple semantics of functions
that update this data structure.

Our concrete goal was to improve the MPD system as its development continued,
by testing it in a way orthogonal to the traditional testing procedures. We expect to
modify its code to conform closely to the version expressed in the language used by
the simulator to express the individual programs that the MPD processes execute.

In the long run we hope to use this phase of the project as a step toward proving
theorems about MPD and similar systems, thus establishing a new level of reliability
for parallel systems software.

3 The Multiprocess Model

We are modeling a collection of Unix-style processes communicating via TCP using
Unix system calls. That is, our model is a slight, rather than an extreme, abstraction of
the C implementation.

3.1 The State of a Multiprocess Computation

A multiprocess-state (or m-state) is a 4-tuple:

(process-states connection-states listening-states program-list).

Each process-state is a 5-tuple:

(process-id program-name program-counter runtime-stack memory).

The programs that update process states can contain system calls that update other parts
of the multiprocess state, for example, creating new connections, sending and receiving
messages, and creating new process states.

Each connection-state is a 4-tuple:

(source destination transit-queue inbox-queue).

A connection-state represents a one-way communication channel between a pair of
processes. The source and destination are pairs (process-id file-descriptor), because
there can be any number of connections between a pair of processes (as in Unix). The
transit queue represents messages en route, and the inbox queue represents messages
that have been delivered but not yet received by the destination process.

A listening-state is a 4-tuple:

(process-id file-descriptor port-number request-queue).

Each listening-state represents a process listening for new connections. As in Unix,
the file descriptor is known only to the local process, and the port number is known
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globally. The request queue is a list of (process-id file-descriptor) pairs representing
processes that are asking for connections.

The program-list is simply an alist that maps program names to program code. This
is used when starting new processes.

3.2 The System Calls

The programming language has a set of system calls for setting up communication
channels with other processes, sending and receiving messages, and creating new pro-
cesses. The system calls reflect similar Unix system calls, in particular, the use of ports
and file descriptors. We have simplified things, however, by omitting error handling.

file-descriptor = setup-listener(port). This takes the place of the Unix socket and
bind system calls. It modifies a multiprocess state by creating a new listening
state.

file-descriptor = connect(host, port). A request to connect to another process inserts
an entry into the request queue of a listening state. The process waits until the
connection is accepted by the remote process.

file-descriptor = accept(file-descriptor). Accepting a connection takes a member of
the request queue and creates a new connection state. If the request queue is
empty, the process waits until a request arrives.

file-descriptor-list = select(). Select returns the list of file descriptors that have mes-
sages ready to be received, in particular, nonempty inbox queues in connection
states and nonempty request queues in listening states.

send(file-descriptor, message). Send inserts a message into the transit queue of a
connection state.

message = receive(file-descriptor). Receive takes a message from the inbox queue of
a connection state. If the inbox queue is empty, the process waits until a message
has been delivered.

return-code = fork(). Fork creates a copy of the current process, returning a flag
telling whether the process is the parent or the child.

exec(program, arguments). Exec replaces the current process with a new process.

rsh(host, program, arguments). Rsh creates a new process on a given host.

3.3 The Multiprocess Simulator

The individual processes are simulated as ordinary state machines, with an ACL2 func-
tion that steps the process by executing one instruction of the program, updating the
process state. When a simulator executes a system call, the multiprocess state can be
updated as well.
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The multiprocess is simulated by executing two types of step: (1) stepping an in-
dividual process, and (2) stepping a connection state. Stepping a connection state is
simply transferring a message from the transit queue to the inbox queue, that is, deliv-
ering a message. An oracle tells the simulator which kind of step to perform and which
process to step or which connection state to step.

A deficiency of our multiprocess model is that the connect, accept, and rsh
commands are executed is if they had instantaneous effects on other processes. The
model could be improved by adding another type of communication channel for system
operations; that would allow delays before the operations are carried out, analogous to
the transit and inbox queues of connection states.

3.4 Status of the ACL2 Code

We have constructed a prototype multiprocess simulator in ACL2 (see the file README
of the associated directory for pointers to the books) and run it on two simple parallel
programs. The first contains console and daemon programs (see Figure 1) that cause
a message to be sent from the console to a daemon, around the ring and back to the
console. The second is a set of manager and client programs by which the managers
implement a barrier operation for the clients: all clients must call the barrier before
any of them can leave it. The general case of such a barrier was difficult to get right in
the real MPD system; we wish we had been able to test it first on the simulator, which
didn’t exist at the time.

The programs are available in the files trace and fence, respectively, of the associ-
ated directory.

4 The Next Steps

Aside from verifying guards, we have not proved anything about the simulator. But we
are hopeful.

In [5], J Moore presents a method for proving properties of shared-memory multi-
process programs. The key idea of the method is that a substantial part of the proofs can
be done from the points of view of the individual processes. As an individual process
steps from state to state, an oracle tells the process how the shared memory is changed
by the other processes. The properties of the uniprocessor view are then related to the
global multiprocessor view. Perhaps we can use a similar method to prove properties
of our (message-passing) multiprocess model by replacing the shared-memory oracle
with an oracle that tells how the rest of the multiprocess state changes, in particular,
how the connection and listening states change.

Experience with designing and debugging the C version of MPD has shown us
many areas where formal verification with ACL2 would be of great value. In addition
to the barrier example above, we have had difficulties in ensuring that if any client
aborts, the entire job is brought down cleanly. These are cases where even attempting
formal proofs would help us get it right and increase our confidence that we had it right.
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5 Conclusion

This project is still in its early stages. Nonetheless, we have learned a few things. It is
possible to usefully abstract the complex collection of Unix interprocess communica-
tion system calls without trivializing the problems inherent in real parallel algorithms.
Using ACL2 has a steep but climbable learning curve. Our simulator is slow, but we
have hopes of speeding things up by using single-threaded objects.
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