
Flat Domains and Recursive Equations in
ACL2

John Cowles
Department of Computer Science

University of Wyoming

Laramie, Wyoming 82071

cowles@uwyo.edu

March 3, 2002

Abstract

Flat domains can be viewed as a “logic” of total functions in which
every recursive equation has at least one function that satisfies it.

One formalization of flat domains in ACL2 is presented in some
detail.

Flat domains are reviewed in enough detail to make this paper self
contained for those who never knew or don’t remember much about
them.

1 Introduction

The following succinct, but accurate, description of ACL2 is taken from the
introduction to the paper [9]:

The ACL2 system [4, 5] consists of a programming language based
on Common Lisp [10], a logic of total recursive functions1, and
a theorem prover. It contains a definitional principle essentially
identical to that in Boyer and Moore’s Nqthm [1] whereby func-
tion definitions are admissible only if a measure of the arguments
can be shown to be decreasing in some well-founded sense, in
every recursive call.

1That is, total computable functions such as those studied in computability theory [3].

1

ACL2’s definitional principle ensures not only that an admissible definition
defines an unique total function, but also that the definition can be used to
actually compute the function. That is, at least in principle, any recursion
terminates in the programming language implementation of the definition.

For example, consider the following proposed definitions, taken from [8],
of g and h, shown in ACL2’s Lisp-like syntax.

(defun g (n)

(if (equal n 0)

nil

(cons nil

(g (- n 1)))))

(defun h (n)

(if (equal n 0)

0

(+ 1

(h (- n 1)))))

These definitions are both inadmisible because termination is impossible to
establish: Executing either (g n) or (h n), in Lisp, for any negative integer
n, eventually exhausts resources by attempting a nonterminating computa-
tion.

Although the defining recursive equations, given below, for g and h cannot
be reliably used for computation, a question still remains: Are there any
ACL2 functions that satisfy the defining recursive equations for g and h?

(equal (g n)

(if (equal n 0)

nil

(cons nil

(g (- n 1)))))

(equal (h n)

(if (equal n 0)

0

(+ 1

(h (- n 1)))))

That is, can the defining equation for g or h be consistently added to ACL2’s
logic? Notice that the equations are syntactically similar, g conses nil where
h adds 1. As shown in [8], the defining equation for h can be safely added
as an axiom, but adding the defining equation for g renders ACL2’s logic
inconsistent. Also shown in [8, 9], any tail recursive defining equation, such
as the one shown below, can be consistently added to ACL2’s logic.

(equal (h n)

(if (equal n 0)

nil

(h (- n 1))))

The above examples show that ACL2’s logic can sometimes be consistently
extended by adding a recursive equation and sometimes not.

Functions defined on a so called flat domain can be viewed as a “logic”
of total functions in which every recursive equation is consistent. That is,

2

⊥

tt t

L
L
L
LL

�
�
�
��

tt

e
e
e
e
e

%
%
%
%
%

· · ·· · ·S − {⊥} :

Figure 1: Graphical representation of a flat domain.

every recursive equation has at least one function that satisfies it. The next
sections briefly review flat domains and their application to recursive equa-
tions. For the time being, Lisp’s prefix notation is abandoned in favor of
more conventional mathematical notation. Later sections apply the lessons
learned from the study of flat domains to ACL2.

2 Flat Domains

A flat domain, as discussed in the fixpoint theory of program semantics [7,
Chapter 5] and [3, Chapter 16], is a structure < S,v,⊥ >, where S is
a set, ⊥ ∈ S, and the binary relation v is the partial order2 defined by
x v y ⇐⇒ x = ⊥ ∨ x = y.

This partial order is extended componentwise to tuples of elements of S,
and then to functions on S, by

< x1, . . . , xn > v < y1, . . . , yn > ⇐⇒ x1 v y1 ∧ · · · ∧ xn v yn

and for functions f and g, by

f v g ⇐⇒ (∀~x ∈ Sn)[f(~x) v g(~x)].

The “flat part” of flat domain is depicted by the row of vertices, labeled
with S − {⊥}, in Figure 1. The figure shows a graphical representation of
the < relation defined by x < y ⇐⇒ x v y ∧ x 6= y.

2.1 Least Upper Bounds of Chains

Every chain of functions on S,

f0 v f1 v · · · v fi v · · · ,
2Recall that a partial order is reflexive, antisymmetric, and transitive.

3

has an unique least upper bound denoted by tfi. That is, tfi is a function
that satisfies

• for all j, fj v tfi and

• if f is any function such that for all i, fi v f , then tfi v f .

For each input ~x, tfi is easily defined by cases: If for all i, fi(~x) = ⊥, then
let tfi(~x) = ⊥. Otherwise, there is an j such that fj(~x) 6= ⊥. It must be
that for all k > j, fk(~x) = fj(~x). So in this case, let tfi(~x) = fj(~x). Notice
that in either case, for each ~x, there exists an j such that for all k ≥ j,
tfi(~x) = fk(~x).

2.2 Monotonic Terms3

Let F be a variable ranging over the functions (of a fixed arity) on S and
let τ [F] be a term built by compositions involving F and functions on S.
For a function f (with the same number of inputs as F), τ [f] denotes the
term obtained by replacing every occurrence of F in τ [F] with f . For each
function f (with the appropriate number of inputs) on S, the term τ [f] also
denotes a function on S.

Such a term τ [F] is monotonic just in case whenever f and g are functions
such that f v g, then τ [f] v τ [g].

If τ [F] is monotonic and

f0 v f1 v · · · v fi v · · ·

is a chain of functions, then clearly

τ [f0] v τ [f1] v · · · v τ [fi] v · · ·

is also a chain. Furthermore, since, for all j, fj v tfi, it must be that for all
j, τ [fj] v τ [tfi]. Thus τ [tfi] is an upper bound of the chain

τ [f0] v τ [f1] v · · · v τ [fi] v · · · .

Since the least upper bound can be no larger than an upper bound,

tτ [fi] v τ [tfi].

Since the number of occurrences of F in τ [F] is finite, for every ~x, it is
always possible to find a j such that

τ [tfi](~x) = τ [fj](~x).
3These monotonic terms are a special case of what’s known, in the literature of flat

domains, as monotonic functionals.

4

This can be proved by structural induction on the term τ [F]. Here is an
example illustrating the proof.

Example. Suppose τ [F] is F (F (x − 1, y), F (y − 1, x)). Then, given x and
y, there are j1, j2, and j3 such that for all k1 ≥ j1, for all k2 ≥ j2, and
for all k3 ≥ j3

tfi(x− 1, y) = fk1(x− 1, y)

tfi(y − 1, x) = fk2(y − 1, x)

tfi(tfi(x− 1, y),tfi(y − 1, x)) = fk3(tfi(x− 1, y),tfi(y − 1, x)).

Let j = max(j1, j2, j3). Then

tfi(tfi(x− 1, y),tfi(y − 1, x)) = fj(fj(x− 1, y), fj(y − 1, x)).

Therefore for all ~x, there is a j such that

τ [tfi](~x) = τ [fj](~x) v tτ [fi](~x);

so τ [tfi] v tτ [fi]. Combined with tτ [fi] v τ [tfi], from above, it follows [7,
Theorem 5-1, page 367] that for any monotonic term τ [F] and any chain of
functions

f0 v f1 v · · · v fi v · · · ,

τ [tfi] = tτ [fi].

3 Recursive Equations

Let F be a function variable and let τ [F] be a term. A recursive equation is
of the form

F (~x) = τ [F](~x).

A solution for such an equation is a function f such that for all ~x,

f(~x) = τ [f](~x).

Such a solution f is said to be a fixed point of the term τ [F](~x).
When τ [F] is monotonic, a construction due to Kleene [6, Proof of The-

orem XXVI, pages 348–349] shows that the equation

F (~x) = τ [F](~x)

always has a solution:

5

Use the term τ [F] to recursively define a chain of functions,

f0(~x) = ⊥
fi+1(~x) = τ [fi](~x). (1)

Since τ [F] is monotonic,

f0 v f1 v · · · v fi v · · ·

and
τ [f0] v τ [f1] v · · · v τ [fi] v · · · .

By definition τ [fi] = fi+1, so tτ [fi] = tfi. Then, from above,

tfi = tτ [fi] = τ [tfi].

That is, tfi is a solution for the recursive equation F (~x) = τ [F](~x). Thus
tfi is a fixed point for the term τ [F](~x).

Furthermore, the least upper bound tfi given by the Kleene construction
is the least fixed point for the term τ [F](~x) in the following sense. For any
fixed point f of τ [F](~x), tfi v f This follows because any fixed point f must
be an upper bound the chain fi: Clearly f0 v f . If fi v f , since τ [F] is
monotonic and f is fixed point, then fi+1 = τ [fi] v τ [f] = f .

3.1 Which Terms are Monotonic?

The answer to this question is explored with the help of the following exam-
ples.

Tail Recursion. Consider a term τ [F] of the form

if test(x) then base(x)
else F (step(x)).

Let f and g be unary functions such that f v g. Then, whenever test(x)
holds, τ [f](x) = base(x) = τ [g](x); so in this case τ [f](x) v τ [g](x).
When test(x) does not hold, since ∀y[f(y) v g(y)],

τ [f](x) = f(step(x)) v g(step(x)) = τ [g](x).

Thus τ [f] v τ [g]. That is, tail recursive terms are always monotonic.

This means that tail recursive equations always have solutions. This
observation gives another explanation for the result in [8, 9], that any
tail recursive equation is satisfiable by some function.

6

Primitive4 Recursion. Consider a τ [F] of the form

if test(x) then base(x)
else h(x, F (step(x))).

Let f and g be unary functions such that f v g. Then, as above,
whenever test(x) holds, τ [f](x) = base(x) = τ [g](x).

Showing τ [F] is monotonic, when test(x) does not hold, reduces to
showing

τ [f](x) = h(x, f(step(x))) v h(x, g(step(x))) = τ [g](x).

As above, f(step(x)) v g(step(x)). One way to ensure that

h(x, f(step(x))) v h(x, g(step(x))

is to require that h always preserves the partial order v on its rightmost
input:

For all x, y1, and y2, whenever y1 v y2, then h(x, y1) v h(x, y2).

A unary function that always preserves v is said to be monotonic. So
for all x, the unary function hx defined by hx(y) = h(x, y) should be
monotonic.

Thus, a primitive recursive term is a monotonic term whenever for
each x, the unary function hx is a monotonic function.

Which Functions are Monotonic?

By definition, an unary function f1 is monotonic iff for all x, whenever
x1 v x2, then f1(x1) v f1(x2). It is straightforward to prove [7] that
an unary function f1 is monotonic iff either ⊥ is a fixed point for f1

(i.e. f1(⊥) = ⊥) or f1 is constant (i.e., ∃c1∀x[f1(x) = c1]).

4These terms are called primitive recursive because for a τ [F] with this particular
form, the recursive equation F (x) = τ [F] is a generalization of the definitions by primitive
recursion studied in computability theory [3]:

F (x1, . . . , xn, 0) = k(x1, . . . , xn)
F (x1, . . . , xn, t+ 1) = h(t, F (x1, . . . , xn, t), x1, . . . , xn)

7

This observation gives another explanation for the result in [2], that
can be paraphrased in the terminology of this paper: A sufficient (but
not necessary) condition on h for a primitive recursive term, τ [F], to
be monotonic is that h have a right fixed point, i.e., ∃c∀x[h(x, c) = c].
To see this, use the right fixed point c to build the flat domain with
c playing the part of ⊥. Then for each x, the unary function hx is
a monotonic function, which, as noted above, is enough to guarantee
that the primitive recursive term, τ [F], is a monotonic term.

Nested Recursion. Consider a τ [F] of the form

if test(x) then base(x)
else F (F (step(x))).

Let f and g be unary functions such that f v g. Then, as above,
whenever test(x) holds, τ [f](x) = base(x) = τ [g](x).

Showing τ [F] is a monotonic term, when test(x) does not hold, reduces
to showing

τ [f](x) = f(f(step(x))) v g(g(step(x))) = τ [g](x).

Since f v g, both of the following hold,

f(step(x)) v g(step(x))

f(g(step(x))) v g(g(step(x))).

One way to ensure that

f(f(step(x))) v g(g(step(x))

is to require that f be a monotonic function: Since f(step(x)) v
g(step(x)), then f(f(step(x))) v f(g(step(x))). So

f(f(step(x))) v f(g(step(x)) v g(g(step(x)).

Thus, one way to ensure that τ [F] is a monotonic term, when the
function variable F is nested more than one deep, is to restrict the
variable F to range only over monotonic functions.

8

Nested Recursion and Kleene’s Construction

Equations (1) use τ [F] to recursively define a sequence of functions,
f0, f1, . . . , fi To ensure that the fi form a v-chain, τ [F] should
be a monotonic term; and to ensure that τ [F] is a monotonic term,
the function variable F should range only over monotonic functions.
Hence, each of the fi should be a monotonic function.

Clearly f0, defined by f0(x) = ⊥, is a monotonic function. Since fi+1

is defined by fi+1(x) = τ [fi](x), one way to ensure that all the fi are
monotonic functions is to require, of the term τ [F], that whenever f
is a monotonic function, then τ [f] is also a monotonic function. Here
are two ways to meet this requirement:

1. Monotonic functions are easily seen to be closed under composi-
tion. Thus, if τ [F] is a term built by compositions involving F
and monotonic functions, then τ [F] is, indeed, a term such that
whenever f is a monotonic function, then τ [f] is also a monotonic
function. Thus, in this nested recursion example, test(x), base(x),
and step(x) would have to be unary monotonic functions and the
ternary if-then-else function would have to be replaced by the ex-
plicitly monotonic sequential if-then-else function, sq-if-then-else,
that satisfies

sq-if true then a else ⊥ = a

sq-if false then ⊥ else b = b

sq-if ⊥ then a else b = ⊥

2. A function is said to be strict if and only if the function returns
⊥ whenever any of its inputs is ⊥. Every strict function is mono-
tonic. Notice that the function sq-if-then-else is not strict. If
test(x) is strict and if-then-else is replaced by sq-if-then-else in this
nested recursion example, then the resulting τ [F] always produces
a monotonic function, whenever F is replaced by any unary func-
tion f . That is, for a term, τ ′[F], of the form

sq-if test(x) then base(x)
else F (F (step(x))),

if test(x) is strict and x v y, then for any unary function f ,
τ ′[f](x) v τ ′[f](y).

Most orthodox expositions [3, 7] of flat domains and monotonic terms
simplify matters by always imposing the restrictions just mentioned above

9

in 1: The term τ [F] must be composed entirely of F and monotonic func-
tions, and F must vary only over monotonic functions. Monotonic functions
almost always treat ⊥ in special ways that often cause mechanized proofs
involving monotonic functions to “explode” with case-splits. Thus, mono-
tonic functions should be avoided as much as possible. The previous three
examples show that it is often possible to reduce the number of monotonic
functions required in a recursive definition.

These examples suggest the following very rough and primitive heuristics
for subterms, τ [F], of the form

if test(x) then t-term(x)
else e-term(x).

• If F appears in t-term(x) or e-term(x), then, other function applica-
tions appearing in t-term(x) or e-term(x),

1. need not be applications of monotonic functions, if they contain
no applications of F ;

2. should be applications of monotonic functions, if they contain any
application of F .

• If F appears in test(x), then replace if by sq-if.

• If F is nested more than one deep in any of test(x), t-term(x), or
e-term(x), then replace if by sq-if and ensure that test(x) is strict.

4 Formalizing Flat Domains in ACL2

Impose a partial order, $<=$, on ACL2 data by specifying a “least element”,
($bottom$), that is strictly less than any other ACL2 datum and no other
distinct data items are related:

(defstub

$bottom$ () => *)

(defun

$<=$ (x y)

(or (equal x ($bottom$))

(equal x y)))

ACL2 easily verifies that $<=$ is a reflexive partial order on the ACL2 uni-
verse.

Encapsulates are used to axiomatize various situations involving unary
functions indexed by nonnegative integers: f0, f1, . . . , fi, Indexed func-
tions are formalized in ACL2 by treating the index as an additional argument
to the function, so fi(x) becomes (f i x) in ACL2.

10

One of these situations is the case, of an $<=$-chain of functions, consis-
tently axiomatized by

(implies (and (integerp i)

(>= i 0))

($<=$ (f i x)

(f (+ 1 i) x))).

The least upper bound of the chain of functions is defined in ACL2 by using
defchoose to pick an appropriate “index” required in the definition of the
least upper bound. ACL2 verifies that this formal least upper bound is, in
fact, not only an upper bound of the chain, but the least upper bound.

By adding the consistent axiom

(implies ($<=$ x y)

($<=$ (f i x)

(f i y)))

to the preceding axiom, ACL2 verifies that the least upper bound of a $<=$-
chain of monotonic functions is also a monotonic function. Functional

instantiation shows that the least upper bound exists.

4.1 Formalizing the Kleene Construction

Recall that equations (1) use a monotonic term τ [F] to recursively define a
chain of functions. The least upper bound of the chain is a solution to the
the recursive equation F (x) = τ [F](x)

A very ambitious formalization of Kleene’s construction would require the
formalization of monotonic terms τ [F] and the formal proof that whenever
τ [F] is a monotonic term, then the construction produces a function f such
that f(x) = τ [f](x). In fact, this ambitious formalization has yet to be
undertaken.

A much less ambitious, but still useful, formalization abstracts away the
monotonic term τ [F]: Recall that the term τ [F] is used to define two chains,

f0 v f1 v · · · v fi v · · ·

g0 v g1 v · · · v gi v · · · ,
by

f0(x) = ⊥
fi+1(x) = τ [fi](x)

gi(x) = τ [fi](x).

The argument showing that tfi = τ [tfi] is summarized as follows.

11

1. tgi = tfi, because gi = fi+1.

2. gi = τ [fi] v τ [tfi], because τ [F] is a monotonic term. So τ [tfi] is an
upper bound of the gi.

3. ∀x∃j(τ [tfi](x) = τ [fj](x) = gj(x)), because of the finite number of
occurrences of F in τ [F]. So there is a Skolem function h such that
τ [tfi](x) = τ [fh(x)](x) = gh(x)(x).

4. Then tgi(x) v τ [tfi](x) = gh(x)(x) v tgi(x), by 2 and 3. Thus
tgi = τ [tfi].

5. Then tfi = tgi = τ [tfi], by 1 and 4.

The abstract version, leaving out the term τ [F], of this argument goes as
follows.

• Use encapsulate to consistently axiomatize two $<=$-chains, (f i x)

and (g i x), related by (equal (g i x)(f (+ i 1) x)). Then ACL2
verifies that these two chains have the same least upper bound. This
corresponds to 1 above.

• As in the previous item, use encapsulate to consistently axiomatize
two $<=$-chains, (f i x) and (g i x), related by (equal (g i x)

(f (+ i 1) x)). This time two additional functions (ub-g x) and
(h x) are consistently axiomatized so that

– (ub-g x) is an upper bound of the (g i x), i.e., ($<=$ (g i x)

(ub-g x)). So ub-g is playing the part of τ [tfi] in 2 above.

– (equal (ub-g x)(g (h x) x)). So h is the Skolem function h
in 3 above.

Then ACL2 verifies (equal (lub-f x)(ub-g x)), where lub-f is the
least upper bound of the (f i x). This corresponds to the conclusion
5 above.

5 Utilizing the Abstract Kleene Construction

in ACL2

Given a concrete recursive equation F (x) = τ [F](x) that we wish to study
in ACL2, proceed as follows:

12

• Check if τ [F] is a monotonic term. ACL2 can aid in making this
determination. If τ [F] is not a monotonic term, then use heuristics to
replace a minimal number of functions in τ [F] with their monotonic
or strict counterparts. This, of course, changes the original recursive
equation from one that may not have a solution into a similar equation
guaranteed to have a solution.

• Use τ [F] to define the chains (f i x) and (g i x).

(defun

f-chain (i x)

(if (zp i)

($bottom$)

τ [f-chain(− i 1)])

(defun

g-chain (i x)

(f-chain (+ 1 i) x))

• Define the least upper bound, lub-f-chain , of the chain, f-chain.
Defchoose is used to choose the required “index”, lub-f-chain-i.

(defun

lub-f-chain (x)

(f-chain (lub-f-chain-i x) x))

• Use τ [F] and lub-f-chain to define an upper bound, ub-g-chain, of
g-chain.

(defun

f (x)

(lub-f-chain x))

(defun

ub-g-chain (x)

τ [f])

• Use the calls of F in τ [F] to help define the Skolem function called h

above.

• ACL2 uses functional instantiaton to verify (equal (lub-f-chain x)

(ub-g-chain x)).

• Finally, ACL2 uses the equality in the previous item to verify (equal

(f x) τ [f]).

Examples

Tail Recursion. Construct an ACL2 function f satisfying the equation

13

(equal (f x)

(if (test x)

(base x)

(f (st x)))).

Then following the above construction:

• τ [f], which is already a monotonic term, is

(if (test x)

(base x)

(f (st x)))).

• Define:

(defun

f-chain (i x)

(if (zp i)

($bottom$)

(if (test x)

(base x)

(f-chain (- i 1)(st x)))))

• Define g-chain, choose the “index” lub-f-chain-i, define lub-

f-chain and f as outlined above.

• Define:

(defun

ub-g-chain (x)

(if (test x)

(base x)

(f (st x))))

• Define the Skolem function, called h above, and called Skolem-f

here:

(defun

Skolem-f (x)

(lub-f-chain-i (st x)))

• Use functional instantiation to prove

(defthm

lub-f-chain=ub-g-chain

(equal (lub-f-chain x)(ub-g-chain x))

...)

14

• Finally, use the equality in the previous item to prove

(defthm

generic-tail-recursive-f

(equal (f x)

(if (test x)

(base x)

(f (st x))))

...)

Zero Function. Construct an ACL2 function Z satisfying the equation

(equal (Z x)

(if (equal x 0)

0

(* (Z (- x 1))(Z (+ x 1))))).

Since the two recursive calls of Z are contained inside the call to *, the
heuristics suggest that * is the only monotonic function required for the
construction to succeed. Unfortunately, * is not a monotonic function,
a least with respect to the usual ACL2 version of ⊥, ($bottom$). A
strict (and hence monotonic) version of * would require for any x,

(equal (* ($bottom$) x) ($bottom$))

(equal (* x ($bottom$)) ($bottom$)).

Fortunately, the above two equations do hold if ($bottom$) is replaced
by 0,

(equal (* 0 x) 0) (equal (* x 0) 0).

Therefore, the entire construction can be carried out using 0 in place
of ($bottom$) and $0<=$ in place of $<=$, where

(defun

$0<=$ (x y)

(or (equal x 0)

(equal x y))).

Under these circumstances, the definition of Z-chain would be

15

(defun

Z-chain (i x)

(if (zp i)

0

(if (equal x 0)

0

(* (Z-chain (- i 1)(- x 1))

(Z-chain (- i 1)(+ x 1)))))).

This example illustrates that any convenient ACL2 object can be used
to play the role of ($bottom$). In this case, after Z-chain is defined,
ACL2 reports:

We observe that the type of Z-CHAIN is described

by the theorem (EQUAL (Z-CHAIN I X) 0).

This means that during the systematic use of Z-chain to construct Z,
ACL2 has essentially already deduced that Z is 0 on all inputs.

Ackermann’s Function. Construct an ACL2 function f satisfying

(equal (f x1 x2)

(if (equal x1 0)

(+ x2 1)

(if (equal x2 0) (*)

(f (- x1 1) 1)

(f (- x1 1)(f x1 (- x2 1)))))).

This example illustrates how to reduce recursive definitions of func-
tions, with more than one input, to the unary case. The basic tech-
nique comes from the implementation of the macro defpun discussed
in [8, 9].

Since the recursive calls to f are nested in the innermost call to if, the
heuristics suggest it should be possible define an ACL2 function f that
satisfies

(equal (f x1 x2)

(if (equal x1 0)

(+ x2 1)

(SQ-IF (LT-ST-EQUAL x2 0)

(f (- x1 1) 1)

(f (- x1 1)(f x1 (- x2 1)))))).

16

Here SQ-IF is an ACL2 macro implementation of sq-if, the monotonic
sequential version of if, and LT-ST-EQUAL is a left-strict version of
equal satisfying (equal (LT-ST-EQUAL ’undef$ y) ’undef$). Here
’undef$ is used in place of ($bottom$).

The heuristics are too primitive. No such ACL2 function was proved
to exist. But, experimentation shows it is possible to define an ACL2
function f satisfying

(equal (f x1 x2)

(if (equal x1 0)

(LT-ST-+ x2 1)

(sq-if (lt-st-equal x2 0) (**)

(f (- x1 1) 1)

(f (- x1 1)(f x1 (- x2 1)))))).

Here LT-ST-+ is a left-strict version of (binary) + satisfying (equal

(LT-ST-+ ’undef$ y) ’undef$).

Of course any function f satisfying this last equation may not satisfy
the original equation designated above by (*). However, ACL2 can
verify the following, showing that any such f can fail to satisfy (*)

only when the second input is ’undef$:

(implies (not (equal x2 ’undef$))

(equal (f x1 x2)

(if (equal x1 0)

(+ x2 1)

(if (equal x2 0)

(f (- x1 1) 1)

(f (- x1 1)(f x1 (- x2 1))))))).

Here is the unary version of the desired equation, (**).

(equal f1 (x)

(let ((x1 (car x))

(x2 (cadr x)))

(if (equal x1 0)

(lt-st-+ x2 1)

(sq-if (lt-st-equal x2 0)

(f1 (list (- x1 1) 1))

(f1 (list (- x1 1)

(f1 (list x1 (- x2 1))))

))))).

17

The heuristics suggest the second list should be monotonic. It is
replaced with a right-strict version of (binary) list, RT-ST-LIST sat-
isfying (equal (RT-ST-LIST x ’undef$) ’undef$).

Here is the final definition for the chain used to construct an unary
function f1:

(defun

f1-chain (i x)

(if (zp i)

’undef$

(if (eq x ’undef$) ;;Ensure f1 is strict and

’undef$;;thus a monotonic function.

(let ((x1 (car x))

(x2 (cadr x)))

(if (equal x1 0)

(lt-st-+ x2 1)

(sq-if (lt-st-equal x2 0)

(f1-chain (- i 1)

(list (- x1 1)

1))

(f1-chain

(- i 1)

(rt-st-list (- x1 1)

(f1-chain

(- i 1)

(list x1

(- x2 1))

))))))))).

The unary function f1 is used to define a function f satisfying the
equation designated above by (**):

(defun

f (x1 x2)

(f1 (list x1 x2))).

6 Conclusion

The theory of flat domains and its application to recursive equations have
been reviewed. The ideas of a monotonic term and a monotonic function are
the keys to ensuring that recursive equations have a solution.

18

Wholesale use of monotonic functions is undesirable from the practical
point of view of mechanically implementing and verifying the constructions
suggested by the theory of flat domains. Preliminary heuristics have been
suggested to ensure that a term is monotonic while minimizing the number
of applications of monotonic functions in the term.

One formalization of flat domains in ACL2 has been presented in some de-
tail. Examples illustrate both success and limitations with this methodology
for dealing with recursively defined functions in ACL2.

References

[1] R. Boyer and J Moore. A Computation Logic Handbook. Academic Press,
second edition, 1997.

[2] J. Cowles, Consistently Adding Primitive Recursive Definitions in ACL2,
ACL2 Workshop 2002.

[3] M. Davis, R.Sigal, and E. Weyuker. Computability, Complexity, and Lan-
guages. Academic Press, second edition, 1994.

[4] M. Kaufmann, P. Manolios, and J Moore. Computer-Aided Reasoning:
An Approach. Kluwer Academic Press, 2000.

[5] M. Kaufmann, P. Manolios, and J Moore, editors. Computer-Aided Rea-
soning: ACL2 Case Studies. Kluwer Academic Press, 2000.

[6] S. Kleene. Introduction to Metamathematics, Van Nostrand, 1952.

[7] Z. Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.

[8] P. Manolios and J S. Moore. Partial Functions in ACL2. In M. Kaufmann
and J S. Moore, Editors, ACL2 Workshop 2000 Proceedings, October 30–
31, 2000, University of Texas at Austin.

[9] P. Manolios and J S. Moore. Partial Functions in ACL2. January 2001,
submitted for publication.

[10] G. Steele, Jr. Common Lisp The Language, Second Edition. Digital
Press, 1990.

19

