
Consistently Adding Primitive
Recursive Definitions in ACL2

by

John Cowles
University of Wyoming

1



defpun

A macro for consistently introducing “partial

functions” into CAL2.

Described in Pete & J’s paper, Partial

Functions in ACL2, at ACL2 Workshop

2000.

One of many cases handled by defpun is when

the “defining equation” is tail recursive.

2



Tail Recursion

Let test, base, and st be arbitrary unary

functions.

There always is at least one ACL2 function f

that satisfies

(equal (f x)

(if (test x)

(base x)

(f (st x)))).

3



Tail Recursion Construction

Pete & J construct a tail recursive function f

in ACL2:

1. Define stn so that (stn x n) computes

(stn x).

2. Use defchoose to define a Skolem

(witnessing) function fch so that

(fch x) is an n such that (test (stn x n))

holds, if such an n exists.

If no such n exists, then ACL2 knows

nothing about the value of (fch x).

If (test (stn x (fch x))) holds, then

(fch x) need not be the smallest n such

that (test (stn x n)) holds.

4



Tail Recursion Construction

3. Define a version of f, called fn, with an
extra “clock-like” input parameter, n, that
ensures termination:

(defun fn (x n)

(declare (xargs :measure (nfix n)))

(if (or (zp n) (test x))

(base x)

(fn (st x) (1- n)))).

4. Finally define f:

(defun f (x)

(if (test (stn x (fch x)))

(fn x (fch x))

nil))

Any constant would do in place of nil in
this definition.

4-a



Tail Recursion Construction

(defun f (x)

(if (test (stn x (fch x)))

(fn x (fch x))

nil))

ACL2 verifies that this f satisfies the tail

recursive equation

(equal (f x)

(if (test x)

(base x)

(f (st x)))).

4-b



Primitive Recursion

Let h be a binary function.

A function f satisfying an equation of the

form

(equal (f x)

(if (test x)

(base x)

(h x (f (st x)))))

is called primitive recursive.

5



Primitive Recursion

This definition of primitive recursive is

inspired by the primitive recursive definitions

studied in Theory of Computation courses:

For previously defined functions, k and h, on

the non-negative integers, define f by

f(~x,0) = k(~x)

f(~x, t+ 1) = h(t, f(~x, t), ~x).

Here ~x = x1, ..., xn.

6



Primitive Recursion

Extend Pete & J’s tail recursive construction

to many, but not all, primitive recursive

defining equations.

7



Primitive Recursion

There are h’s for which no ACL2 function f

satisfies the primitive recursive defining

equation:

(equal (f x)

(if (test x)

(base x)

(h x (f (st x))))).

8



Example

No ACL2 function g satisfies this primitive

recursive equation

(equal (g x)

(if (equal x 0)

nil

(cons nil (g (- x 1))))).

Here

• (test x) is (equal x 0),

• (base x) is nil,

• (h x y) is (cons nil y), and

• (st x) is (- x 1).

9



Primitive Recursion

(equal (f x)

(if (test x)

(base x)

(h x (f (st x))))).

A sufficient (but not necessary)

condition on h for the existence of f is

that h have a right fixed point.

That is, there is some c such that

(h x c) = c.

10



Primitive Recursion Construction

Modify Pete & J’s tail recursion construction.

Construct a primitive recursive function f in

ACL2:

1. Define stn so that (stn x n) computes

(stn x).

(Same as for tail recursion.)

2. Use defchoose to define a Skolem

(witnessing) function fch so that

(fch x) is an n such that (test (stn x n))

holds, if such an n exists.

(Same as for tail recursion.)

11



Primitive Recursion Construction

3. Define a version of f, called fn, with an

extra “clock-like” input parameter, n, that

ensures termination:

(defun fn (x n)

(declare (xargs :measure (nfix n)))

(if (or (zp n) (test x))

(base x)

(h x (fn (st x) (1- n))))).

4. Finally define f:

Here (h-fix) is a right fixed point for h.

(defun f (x)

(if (test (stn x (fch x)))

(fn x (fch x))

(h-fix)))

11-a



Primitive Recursion Construction

(defun f (x)

(if (test (stn x (fch x)))

(fn x (fch x))

(h-fix)))

ACL2 verifies that this f satisfies the

primitive recursive equation

(equal (f x)

(if (test x)

(base x)

(h x (f (st x))))).

11-b



Example

A right fixed point for h is not necessary for
some primitive recursive definitions.

The ACL2 function fix satisfies this
primitive recursive equation

(equal (fix x)

(if (equal x 0)

0

(+ 1 (fix (- x 1))))),

Here

• (test x) is (equal x 0),

• (base x) is 0,

• (h x y) is (+ 1 y) [no fixed point], and

• (st x) is (- x 1).

12



defpr

A macro for consistently introducing primitive
recursive equations into ACL2.

In an encapsulate, carry out the Primitive
Recursion Construction:

• f is constrained only by

(defthm

generic-primitive-recursive-f

(equal (f x)

(if (test x)

(base x)

(h x (f (st x)))))).

• h is constrained to have a right fixed
point, (h-fix).

• test, base, and st are unconstrained.

13



defpr

Given the required fixed point, the defpr

macro

• recognizes a primitive recursive definition,

and

• generates a functional instance of

generic-primitive-recursive-f to produce

a witness to the desired primitive

recursive equation.

14



Example

No ACL2 function g satisfies this primitive

recursive equation

(equal (g x)

(if (equal x 0)

nil

(cons nil (g (- x 1))))).

The problem: cons has no right fixed point.

15



Example

The problem: cons has no right fixed point.

Provide a right fixed point by the following:

(defstub

cons-fix () => *)

(defun

cons$ (x y)

(if (equal y (cons-fix))

(cons-fix)

(cons x y)))

15-a



Example

(defpr

g (x)

(declare (xargs :fixpt (cons-fix)))

(if (equal x 0)

nil

(cons$ nil (g (- x 1)))))

produces an ACL2 solution for g:

(equal (g x)

(if (equal x 0)

nil

(cons$ nil (g (- x 1)))))

Note use of XARGS keyword :fixpt to give the

required fixed point.

15-b



Example

Any fixed point will do.

Multiplication already has a right fixed point,

namely 0:

(* x 0) = 0.

(defpr

fact (x)

(declare (xargs :fixpt 0))

(if (equal x 0)

1

(* x (fact (- x 1)))))

produces an ACL2 solution for fact:

(equal (fact x)

(if (equal x 0)

1

(* x (fact (- x 1)))))

16



Note: ACL2 accepts the definition that uses

the zero-test idiom (zp x) in place of the test

(equal x 0):

(defun

fact (x)

(if (zp x)

1

(* x (fact (- x 1)))))

16-1



Example

This succeeds: (a primitive recursive
definition)

(defpr

f (x)

(declare (xargs :fixpt 0))

(if (equal x 0)

1

(* (f (- x 1))

(f (- x 1)))))

This fails: (not a primitive recursive
definition)

(defpr

f1 (x)

(declare (xargs :fixpt 0))

(if (equal x 0)

1

(* (f1 (- x 1))

(f1 (+ x 1)))))

17



Example

with parameters.

(defpr

k (a b)

(declare (xargs :fixpt 0))

(if (equal b 0)

1

(* a b (k a (- b 1)))))

Note: On the non-negative integers

(k a b) = ab · b!

18



Example

Tail recursion is a special case.

The function, Id-2-2, defined by

(Id-2-2 x1 x2) = x2

is used for h.

Any constant can be used for the fixed point.

(defpr

tail-f (x)

(declare (xargs :fixpt nil))

(if (tail-test x)

(tail-base x)

(Id-2-2 x (tail-f (tail-st x)))))

(defthm

tail-f-is-tail-recursive

(equal (tail-f x)

(if (tail-test x)

(tail-base x)

(tail-f (tail-st x)))))

19



Conclusion

Recursive equations of the form

(equal (f x)

(if (test x)

(base x)

(h x (f (st x)))))

are satisfiable in ACL2’s logic whenever h has

a right fixed point.

Proving h has a right fixed point ensures the

systematic construction of such a function f.

20


