
On the Verification of Synthesized Kalman Filters

Ruben Gamboa∗ John Cowles∗ Jeff Van Baalen∗

Computer Science Department
University of Wyoming

{ruben,cowles,jvb}@cs.uwyo.edu

Abstract

The Kalman Filter is a powerful technique that combines noisy infor-
mation from predictions and observations to estimate an unknown value.
This has tremendous practical applications; for example, Kalman Filters
are used to estimate the position of a spaceship given a mathematical
model of the ship’s trajectory and inertial measurements. A feature of
the Kalman Filter is that while it can be coded in remarkably few lines,
practice has shown that it is difficult to code correctly. Moreover, for the
sake of efficiency and ease of embedding into flight controllers and other
devices, it is often necessary to code a Kalman Filter instance that is spe-
cific to an application. As a result, NASA has automated the process of
generating these code instances. The complexity of the code generator is
such that NASA has discounted the idea of proving the generator correct.
Instead, it promotes the view that the generated code itself should be
verified. NASA has tried various techniques to perform this validation.
In this paper, we explore the use of ACL2 to validate the generated code.

1 Overview

The estimation problem can be described as follows. Suppose we are interested
in a quantity x that can not be measured directly. If we are able to measure
a related quantity z, how can we deduce the value of x from z? This situation
arises naturally in many problems. For example, a pitot tube measures the
difference in pressure between the air rushing against the front of a plane and
the surrounding air. Airspeed is estimated from this pressure difference.

Because of its great practical importance, many techniques have been pro-
posed for the solution of the estimation problem. The Kalman Filter is one of
these techniques, and it is applicable when the variable of interest x changes
linearly over time and the observable variable z is a linear function of x. Such
systems can be described mathematically as follows:

∗This work was supported by NASA grant NAG 2-1570

1



xt = Φxt−1 + w (1)
zt = Hxt + v (2)

where w and v are random variables used to account for uncertainty in the
model. In the general case, x and z are vectors. Φ is a matrix that describes
how the vector x changes over time. Similarly, H is a (not necessarily square)
matrix that describes how the vector x affects the observable vector z.

An interesting aspect of the problem is that once the value of xt is known,
it is possible to use the first equation to predict the value of xt+1 ≈ Φxt. This
estimate is called the optimal “a priori” estimate, since it does not take into
account the value of the observed vector zt+1. After the vector xt+1 is known, it
is possible to find a different estimate of xt+1 (essentially by solving the second
linear equation). In this view, the Kalman Filter weighs these two estimates
in order to find an optimal (linear) estimate of xt+1. Moreover, since H is not
necessarily square, the Kalman Filter can be viewed as a generalization of the
least squares technique used to solve overconstrained systems of equations.

Analysis of the Kalman Filter requires sophisticated mathematics, including
linear algebra, matrix calculus, and probability theory. Probability theory is
needed to reason about the uncertainties in the vectors v and w, matrix calculus
is needed to reason about optimality, and linear algebra is the language used in
the formalization.

In the remainder of this paper we will present a formalizaton of the Kalman
Filter in ACL2. This formalization is not complete in the following sense. While
the key arguments of the correctness of the Kalman Filter have been verified,
we have not created a complete mechanical formalization of matrix calculus
and probability theory. Rather, we have assumed some important theorems
from these fields. Continuing the ACL2 formalization of matrix calculus should
not present any significant challenges, other than the usual problems with any
mechanical formalization. Formalizing multivariate probability theory, on the
other hand, presents a bigger challenge in ACL2. The appropriate way to do
that is an interesting research question left to future work.

An important aspect of this work is to judge whether ACL2 can be an ef-
fective platform for verifying synthesized versions of the Kalman Filter. Such
a judgement is suggested by the relative ease with which it proved the cor-
rectness of a specific Kalman Filter implementation in section 5. In [11], a
mechanical formalization of Kalman Filters in Maude is presented. Maude is
an executable specification system supporting both rewriting and membership
equational logic [3]. There are many similarities between our approach and the
one taken in [11]; indeed, we owe much to the presentation given there. How-
ever, a key point of departure is that the formalism in [11] proves the Kalman
Filter in the context of an actual implementation; i.e., the proof proceeds by
considering a specific program computing a specific filter. Our approach is to
develop the mathematics first. The proof of the implementation then becomes
a matter of associating the variables of the program with the mathematical en-

2



Module #Lines #Defns #Thms Section
linalg.lisp 1,077 14 120 2
array2.lisp 1,161 0 47 2
matrix.lisp 9,872 79 510 2
matalg.lisp 2,710 63 114 2
kalman-defs.lisp 754 21 82 3
kalman-proof.lisp 2,299 5 80 4
kalman-demo.lisp 161 1 6 5

Figure 1: Effort of work

tities of the problem. As may be expected, the mathematical formalization of
the Kalman Filter was very challenging. However, when it came to proving a
specific implementation, the payoff was immediate. The proof of the correctness
of the mechanically generated algorithm was itself mechanical.

An idea of the complexity of the source files can be gleaned from figure 1.
Clearly, the bulk of the complexity lies in the mathematical development. Note
specifically the first four files, which present the formalization of linear algebra.

This paper is structured as follows. In section 2, we give a brief presentation
of the formalization of linear algebra in ACL2. This formalization is described in
more detail in [4]. In section 3, we present a formalization of the Kalman Filter
in ACL2, including the necessary facts from probability theory. In section 4,
we present a proof of the optimality of the Kalman Filter. In section 5 we show
how this mathematical theory can be used to reason about a specific computer
program implementing the Kalman Filter in a loop. Finally, in section 6 we
address the assumptions made in the formalization.

2 Linear Algebra

The formalization of the Kalman Filter requires a large body of background
knowledge about linear algebra. In this section, we provide a quick tour of the
formalization of linear algebra. A more detailed account is presented in [4].

Our approach to formalizing linear algebra was two-fold. First, we used
encapsulate to provide the definitions and theorems from linear algebra that
are needed to prove the correctness of the Kalman Filter. The correctness proof
proceeded from these encapsulated events. In parallel, we formalized actual
matrix algebra using the encapsulated definitions and theorems as a target.
In the ACL2 tradition, the second formalization is executable. That is, it is
possible to define matrices, multiply them, find inverses and determinants, etc,
so we can actually compute Kalman Filters. Thinking ahead to provinding fast
computations, we decided to define matrices using ACL2 arrays, which support
destructive read/write operations while providing a purely functional semantics.

In the remainder of this section, we will describe the abstract formalization:
i.e., the definitions and theorems from linear algebra needed to reason about

3



the Kalman Filter. Our purpose is to give the reader an idea of the theorems
involved and to fix the notations for the remainder of this paper.

The predicate m-matrixp is used to recognize matrices of a given size. For
convenience, we define the functions l and c which return the number of rows
(i.e., lines) and columns of a matrix, respectively. Also introduced are the
basic operations of matrix algebra, such as m-+, m-*, s-*, for matrix addition,
multiplication, and scalar multiplication, respectively. The function m-unary--
defines the additive inverse for matrices, and m-- defines matrix subtraction in
terms of m-+ and m-unary--. Also defined is m-inv, the multiplicative inverse
for matrices. The predicate m-singular tests if a matrix is singular; i.e., if it
does not have an inverse. The remaining matrix operation defined is m-trans
for transposing matrixes. The functions m-zero and m-id construct the zero
and identity matrices of a given size.

In addition to these basic definitions, we provide many lemmas about these
functions. Most of these will be familiar to ACL2 users. The following lemma,
formalizing the associativity of matrix multiplication, is typical:

(defthm assoc-*
(implies (and (equal (c P) (l Q))

(equal (c Q) (l R)))
(m-= (m-* (m-* P Q) R)

(m-* P (m-* Q R)))))

In order to formalize the Kalman Filter, we required a comprehensive set of
facts about linear algebra. Details of this formalization are in [4].

3 Formalizing the Kalman Filter

The Kalman Filter is a common solution to the estimation problem. It is ap-
plicable when the problem can be described as follows:

xk+1 = Φkxk + wk (3)
zk = Hkxk + vk (4)

E[wk] = 0 (5)
E[vk] = 0 (6)

E[wkwi
T] = δk−iQk (7)

E[vkvi
T] = δk−iRk (8)

The state vector x changes (almost) linearly over time, as specified by the matrix
Φ. The random vector w denotes an imperfection in the linear model describing
the change of x. This error vector is assumed to have zero mean, and to be
uncorrelated over time. The covariance matrix Q describes the noise character-
istics of w. The vector z is a vector of measurements. The matrix H explains
how the measurements in z reflect the value of x. The measuring process is
assumed to be imperfect, and v is a random vector modeling this imperfection.

4



As with the vector w, v is assumed to have zero mean and to be uncorrelated
over time. Its noise characteristics are described by the covariance matrix R.

The Kalman Filter is a recursive process that continuously updates the cur-
rent best estimate of the vector x by taking into account the previous best
estimate of x and the current value of z. These two estimates are averaged,
using weights derived from their relative uncertainties. These uncertainties are
also updated, using the values of Q and R. Because the process depends only
on the current estimate of x and the current observed value of z, as opposed to
the entire history of estimates or observations, the Kalman Filter is of extreme
practical importance, prompting Casti to count it as one of the five greatest
results of 20th Century Mathematics [2].

We begin with x0, the initial estimate of the vector x, and P 0 = E[(x0 −
x0)× (x0 − x0)T] which measures our confidence in this initial estimate. Using
x0 and H0, we can compute z0 which is an estimate of the observable vector z
at time 0. Since the vector z can be observed directly, we can judge the quality
of our estimate x0 by considering the residual z0 − z0. Moreover, we can use
the information in this residual to correct the vector x0. If we limit ourselves
to corrections that are linear functions of the residual, we can show that the
optimal correction is given by the Kalman gain matrix, defined as

Kk = P kHk
T
(
HkP kHk

T + Rk

)−1
. (9)

Thus, we can compute a better estimate of x0 using the following equation:

x̂0 = x0 + K0(z0 − z0). (10)

The accuracy of this estimate can be estimated as P0 = E[(x0−x̂0)×(x0−x̂0)T],
and that can be computed from the equation

Pk = (I −KkHk) P k. (11)

Finally, using x̂0 and P0, we can estimate the vector x1 as

x1 = Φ0x̂0. (12)

Our confidence in this estimate is given by P 1 = E[(x1−x1)×(x1−x1)T] which
can be computed from the equation

P k+1 = ΦkPkΦk
T + Qk. (13)

This gives us an initial estimate of x1 and a measure of the accuracy of this
estimate. At this point we can repeat the process to find x̂1, the optimal estimate
of x1, etc.

The formal model of the Kalman Filter in ACL2 follows the description
above very closely. The first step in the formalization is to introduce the input
parameters to the process:

5



(encapsulate
(((x-0) => *) ; initial value of x
((phi *) => *) ; steps through an iteration of x
((ww *) => *) ; iteration step noise
((q *) => *) ; covariance of step noise
((h *) => *) ; matrix transforming observable to x
((v *) => *) ; observation noise
((r *) => *) ; covariance of observation noise
((xhatmin-0) => *) ; initial guess for best estimate of x
((pminus-0) => *) ; initial guess for covariance of estimate
((n) => *) ; dimension of x
((m) => *) ; dimension of y
((m-mean *) => *) ; expected value of an expression
)
...)

The vector x itself is not considered an input vector, since it can be computed
using equation 3. Instead, the constant vector xhatmin-0 is used to specify the
initial value of x, i.e, x0. Similarly, z is not considered an input vector, since it
is defined by equation 4. For example, x is defined as follows:

(defun x (k)
(if (zp k)

(x-0)
(m-+ (m-* (phi (1- k)) (x (1- k)))

(ww (1- k)))))

We now consider the constraints on these symbols. Some of the constraints
have to do with the type of the objects, i.e., the dimension of the vectors and
matrices. For example, we have that phi is an n× n matrix.

Other constraints state key assumptions used by the Kalman Filter. For
example, we stated earlier that

Rk = E[vk × vk
T]. (14)

This assumption is given below:

(defthm mean-of-v-vtrans
(m-= (m-mean (m-* (v k) (m-trans (v k))))

(r k)))

The next part of the ACL2 formalization defines the functions pminus,
pplus, and gain, corresponding to P k, Pk, and Kk, respectively. A look at
equations 13, 11, and 9 reveals that these functions are mutually recursive.
However, it is possible to break the mutual recursion by unfolding some of the
definitions. We could have used ACL2’s support for mutual recursion to de-
fine these functions, but we considered it prudent to build our theory without
mutual recursion, since ACL2’s behavior for simple recursive functions is more
predictable. Our approach can be illustrated with the definition of pplus:

6



(defun pplus (k)
(if (zp k)

(m-* (m-- (m-id (l (x k)))
(m-* (m-* (pminus-0)

(m-* (m-trans (h k))
(m-inv
(m-+ (m-* (h k)

(m-* (pminus-0)
(m-trans (h k))))

(r k)))))
(h k)))

(pminus-0))
(m-* (m-- (m-id (l (x k)))

(m-* (gain-body k) (h k)))
(pminus-body k))))

The recursive part of the definition follows equation 11 exactly. However, note
the presence of gain-body and pminus-body instead of the expected gain and
pminus. These are macros that expand the (recursive) definition of gain and
pminus in terms of pplus:

(defmacro gain-body (k)
‘(m-* (pminus-body ,k)

(m-* (m-trans (h ,k))
(m-inv (m-+ (m-* (h ,k)

(m-* (pminus-body ,k)
(m-trans (h ,k))))

(r ,k))))))

(defmacro pminus-body (k)
‘(if (zp ,k)

(pminus-0)
(m-+ (m-* (phi (1- ,k))

(m-* (pplus (1- ,k))
(m-trans (phi (1- ,k)))))

(q (1- ,k)))))

Note how these macros follow equations 9 and 13 closely.
The base case of the definition of pplus is similar to the recursive body of

the function, except the bodies of gain and pminus are expanded completely in
order to avoid any recursive references to pplus.

Once pplus is defined, it is possible to define the function pminus without
using mutual recursion. In fact, this is precisely what the macro pminus-body
did. Therefore, pminus can be defined directly with pminus-body. Similarly, it
is possible to define gain using gain-body. However, in this case we prefer to
write a new definition explicitly, using pminus instead of pminus-body:

7



(defun gain (k)
(m-* (pminus k)

(m-* (m-trans (h k))
(m-inv (m-+ (m-* (h k)

(m-* (pminus k)
(m-trans (h k))))

(r k))))))

It is useful to compare this definition with the definition of the macro gain-body.
Although these definitions suffice to introduce pplus, pminus, and gain,

subsequent development of the proof is simplified if we have direct analogues of
equations 13, 11, and 9. For this, we use ACL2’s support for multiple definitions
of a function. The following theorem is precisely equivalent to equation 11:

(defthm pplus-recdef
(implies (and (integerp k)

(<= 0 k))
(equal (pplus k)

(m-* (m-- (m-id (l (x k)))
(m-* (gain k)

(h k)))
(pminus k))))

:hints ...
:rule-classes ((:definition ...)))

Similar theorems give recursive definitions of pminus and gain.
A similar development can be used to define xhat and xhatmin, equivalent

to x̂k and xk, respectively. As before, these two functions appear mutually
recursive, but the mutual recursion can be broken by unfolding the definition of
xhat. Thus, we define xhatmin as follows:

(defun xhatmin (k)
(if (zp k)

(xhatmin-0)
(m-* (phi (1- k)) (xhat-body (1- k)))))

This follows equation 12 very closely. Again notice how xhat-body is used
instead of xhat, to unfold the body of that definition. The function xhat is
defined as follows:

(defmacro xhat-body (k)
‘(m-+ (xhatmin ,k)

(m-* (gain ,k)
(m-- (z ,k)

(m-* (h ,k) (xhatmin ,k))))))

(defun xhat (k)
(xhat-body k))

8



As before, we can give a recursive definition of xhatmin that mirrors equation 12
precisely.

With these definitions, it is possible to state the final assumptions made by
the Kalman Filter. In particular, it is assumed that the observation noise is
orthogonal to the error in xk, and that the process noise is orthogonal to the
error in x̂k. A representative constraint is the following:

(defthm mean-of-x-xhatmin*vtrans
(m-= (m-mean (m-* (m-+ (x k)

(m-unary-- (xhatmin k)))
(m-trans (v k))))

(m-zero (n) (m))))

In addition, now that xhatmin is defined, it is possible to state the initial
constraint on pminus-0, that it is our best estimate on the error of xhatmin-0:

(defthm pminus-0-def
(m-= (pminus-0)

(m-mean (m-* (m-- (x 0) (xhatmin-0))
(m-trans (m-- (x 0) (xhatmin-0))))))

:hints ...)

The remaining theorems specify the behavior of the m-mean function, which
computes the expected value of a matrix expression involving random vectors.
A typical theorem states how to take the expected value of a sum:

(defthm mean-+
(implies (and (equal (l p) (l q))

(equal (c p) (c q)))
(equal (m-mean (m-+ p q))

(m-+ (m-mean p) (m-mean q)))))

As long as the sum is well-defined, according to this theorem, the expected value
of the sum is the same as the sum of the expected values.

However, there is at present no support for random variables in ACL2. Hence
the formalization of m-mean is incomplete. In particular, the following theorems
are problematic:

(defthm mean-*
(implies (equal (c p) (l q))

(equal (m-mean (m-* p q))
(m-* (m-mean p) (m-mean q)))))

(defthm mean-delete
(equal (m-mean p) p))

From the second theorem, it is clear that the only ACL2 function that will
satisfy the requirements of the m-mean function is the identify function. The
reason is that mean-delete lacks an important hypothesis, namely that the

9



expression p not contain a random variable. Similarly, the first theorem omits
the hypothesis that the expressions p and q be independent. These hypothesis
can not be stated in ACL2. Therefore, we disable these theorems, allowing
ACL2 to use them only under very controlled circumstances.

The need to control the application of these theorems undermines the cor-
rectness results derived in the next section. What is needed is a way to reason
about random variables directly in ACL2. Notice that a random variable is
usually defined as a function from an event space to the reals. Thus reasoning
about random variables is more natural in a higher-order logic. Capturing their
salient properties in a context that can be used in ACL2 is a major challenge.

4 Correctness of the Kalman Filter

In this section, we present a proof in ACL2 of the correctness of the Kalman
Filter. Three main results are required to show that the Kalman Filter is correct:

• x̂k is the best possible (linear) estimate of xk;

• P k = E[(xk − xk)× (xk − xk)T]; and

• Pk = E[(xk − x̂k)× (xk − x̂k)T].

The first claim states explicitly the correctness of the Kalman Filter approxi-
mation. The other two claims are needed to prove the first.

Therefore, we begin with a proof of the second and third claims. As it turns
out, these claims depend on each other. As was the case with the mutually
recursive definitions in section 3, it is possible to break this dependency.

Consider the claim that P k = E[(xk − xk) × (xk − xk)T]. Certainly, this
is the case when k = 0, since the claim is assumed to be true for the initial
values in the assumed constraint pminus-0-def. Formally in ACL2, we have
the following theorem:

(defthm pminus-as-mean-case-0
(implies (= k 0)

(m-= (pminus k)
(m-mean (m-* (m-- (x k) (xhatmin k))

(m-trans (m-- (x k) (xhatmin k)))))))
:hints ...)

For positive k, we can proceed as follows. Expanding the definitions of xk

and xk, we find that xk − xk = Φk−1(xk−1 − x̂k−1) + wk−1. Therefore, for
positive k we have that

(xk − xk)× (xk − xk)T

= Φk−1 × (xk−1 − x̂k−1)× (xk−1 − x̂k−1)T × Φk−1
T +

(Φk−1 × (xk−1 − x̂k−1))× wk−1
T +

wk−1 × (xk−1 − x̂k−1)T × (Φk−1)T +
wk−1 × wk−1

T. (15)

10



Taking the expected value of both sides of this equation yields

E[(xk − xk)× (xk − xk)T]
= E[Φk−1 × (xk−1 − x̂k−1)× (xk−1 − x̂k−1)T × Φk−1

T] +
E[(Φk−1 × (xk−1 − x̂k−1))× wk−1

T] +
E[wk−1 × (xk−1 − x̂k−1)T × (Φk−1)T] +
E[wk−1 × wk−1

T] (16)
= Φk−1 × E[(xk−1 − x̂k−1)× (xk−1 − x̂k−1)T]× Φk−1

T +
Qk−1. (17)

This step used the properties of E[·] as well as the Kalman Filter assumptions
mean-of-x-xhat*wtrans and mean-of-w*trans-of-x-xhat. Next notice that
E[(xk−1 − x̂k−1)× (xk−1 − x̂k−1)T] is equal to Pk−1 is precisely the third claim
specialized for time k − 1. Using this specialized claim, it is easy to complete
the proof of the second claim. In ACL2, we have proved the following:

(defthm pminus-as-mean-almost
(implies (and (integerp k)

(< 0 k)
(m-= (pplus (1- k))

(m-mean (m-* (m-- (x (1- k))
(xhat (1- k)))

(m-trans (m-- (x (1- k))
(xhat (1- k))))))))

(m-= (pminus k)
(m-mean (m-* (m-- (x k) (xhatmin k))

(m-trans (m-- (x k) (xhatmin k)))))))
:hints ...)

Notice how the theorems pminus-as-mean-case-0 and pminus-as-mean-almost
are reminiscent of the base and induction steps of a proof by induction. The
only difference is that the inductive hypothesis in pminus-as-mean-almost is
about Pk−1 instead of P k−1. This is as expected, since the functions are mu-
tually recursive. These two theorems, which combine to form a weak version of
the second claim, are enough to prove the third claim. Once that proof is done,
it will be trivial to complete the proof of the second claim.

So we turn our attention to the third claim. We wish to show that Pk =
E[(xk− x̂k)× (xk− x̂k)T]. Expanding the definitions of xk and x̂k, we find that
xk − x̂k = (I −KkHk) × (xk − xk) −Kkvk. Transposing and carrying out the
multiplications, it follows that

(xk − x̂k)× (xk − x̂k)T

= (I −KkHk)× (xk − xk)× (xk − xk)T × (I −KkHk)T +
(−(I −KkHk)× (xk − xk)× vk

TKk
T) +

(−Kkvk × (xk − xk)T × (I −KkHk)T) +
Kkvk × vk

TKk
T. (18)

11



Taking the expected value of both sides and dropping the zero terms, we can
conclude that

E[(xk − x̂k)× (xk − x̂k)T]
= (I −KkHk)× E[(xk − xk)× (xk − xk)T]× (I −KkHk)T +

KkRkKk
T. (19)

Notice the expression E[(xk − xk) × (xk − xk)T] above. Using the theorems
pminus-as-mean-almost and pminus-as-mean-case-0, we can reduce that to
P k, provided we can establish that Pk−1 = E[(xk−1− x̂k−1)× (xk−1− x̂k−1)T].
This latter claim is precisely equal to the induction hypothesis that we will have
when we try to prove the third claim by induction. Thus, we can assume that
this is already established and simplify our expression as follows:

E[(xk − x̂k)× (xk − x̂k)T]
= (I −KkHk)× P k × (I −KkHk)T + KkRkKk

T (20)
= P k + (−KkHkP k) + (−P kHk

TKk
T) +

KkHkP kHk
TKk

T + KkRkKk
T (21)

= P k + (−KkHkP k) + (−P kHk
TKk

T) +
Kk × (HkP kHk

T + Rk)×Kk
T (22)

= P k + (−KkHkP k) + (−P kHk
TKk

T) + P kHk
TKk

T (23)

Notice that the last step is justified only if the matrix (HkP kHk
T +Rk) is non-

singular. In fact, its inverse is part of the definition of Kk. In the formal ACL2
theory, that this inverse exists was added explicitly as an axiom; we will have
more to say about this in section 6. At this point, the proof is nearly complete.
It is only necessary to rearrange the terms to make the final argument:

E[(xk − x̂k)× (xk − x̂k)T]
= P k −KkHkP k (24)
= (I −KkHk)× P k (25)
= Pk. (26)

Next, the third correctness claim can be proved using induction on k:

(defthm pplus-as-mean
(implies (and (integerp k)

(<= 0 k))
(m-= (pplus k)

(m-mean (m-* (m-- (x k) (xhat k))
(m-trans (m-- (x k) (xhat k)))))))

:hints ...)

Moreover, once this theorem is established, it is trivial to complete the proof of
the second correctness claim:

12



(defthm pminus-as-mean
(implies (and (integerp k) (<= 0 k))

(m-= (pminus k)
(m-mean (m-* (m-- (x k) (xhatmin k))

(m-trans (m-- (x k) (xhatmin k)))))))
:hints ...)

Now that these two claims have been verified, we can direct our attention
to the main claim, namely that x̂k is the best possible (linear) estimate of xk.
Before proceeding, however, we have to state formally what we mean by best
possible estimate.

Recall that xk is supposed to capture the best “a priori” estimate of xk.
This is the best estimate we can make before taking into account the observable
vector zk. Initially, the best a priori estimate is given by x0 which is input
to the problem. Subsequently, it can be computed by BAPk = Φk−1Bk−1,
where Bk−1 is the best possible estimate of xk−1. Moreover, once we have an a
priori estimate, we find the best possible estimate by adding to the best a priori
estimate a linear combination of the difference between the observed vector zk

and the projected observable HkBAPk. That is, Bk = BAPk + Y × (zk −
HkBAPk). The best possible estimate can be found by choosing an appropriate
matrix Y , and we can do this by differentiating E[(xk−Bk)× (xk−Bk)T] with
respect to Y and setting the result to 0.

To carry out this argument in ACL2, we need to specialize the higher-order
functions Bk and BAPk to the specific vector x as follows:

(defstub best-estimate-of-x (*) => *)

(defun best-prior-estimate-of-x (k)
(if (zp k)

(xhatmin k)
(m-* (phi (1- k))

(best-estimate-of-x (1- k)))))

Notice how best-prior-estimate-of-x is defined in terms of best-estimate-of-x.
To state that best-estimate-of-x in turn depends on best-prior-estimate-of-x,
we introduce the general form of a solution:

(defun result-form (y Xp k)
(m-+ Xp (m-* y (m-- (z k) (m-* (h k) Xp)))))

The intent captured by this definition is that the space of possible estimates
of xk is spanned by the vectors Xp (which will correspond to the best a priori
estimate), and a linear combination of the difference between the observable z
and the predicted observable at Xp. The derivative of the covariance of this
estimate could, in principle, be calculated directly. However, that would involve
the development of a significant subset of matrix calculus. We chose, therefore,
to introduce the derivative directly, without a formal justification:

13



(defun result-form-error-derivative (y Xp k)
(m-+ (s-* 2 (m-mean (m-* (m-- Xp (x k))

(m-trans (m-- (z k)
(m-* (h k) Xp))))))

(s-* 2 (m-* y
(m-mean (m-* (m-- (z k)

(m-* (h k) Xp))
(m-trans (m-- (z k)

(m-* (h k)
Xp)))))))))

Once the derivative is found, we can finish stating formally the relationship
between best-estimate-of-x and best-prior-estimate-of-x:

(defaxiom best-estimate-of-x-def
(implies (and (m-= (best-prior-estimate-of-x k) Xp)

(m-= (result-form-error-derivative y Xp k)
(m-zero (n) (m))))

(m-= (best-estimate-of-x k)
(result-form y Xp k))))

Notice that this relationship must be assumed (not proved), since we did not
develop the theory of matrix calculus sufficiently to show when a matrix function
achieves its minimum. These assumptions will be discussed in section 6.

To complete the proof, we must show that best-prior-estimate-of-x is
equal to xk, and that best-estimate-of-x is equal to x̂k. Because of the struc-
ture of best-prior-estimate-of-x and best-estimate-of-x, we are faced
once again with the task of proving two claims that depend on each other. As
before, it is possible to separate these claims by first proving a weaker version
of one of them.

In this case, it is easy to show that best-prior-estimate-of-x is equal to
xk, as long as we assume that the best-estimate-of-x of k − 1 is equal to
x̂k−1. The proof simply opens up the respective definitions:

(defthm xhatmin=best-prior-almost
(implies (m-= (xhat (1- k))

(best-estimate-of-x (1- k)))
(m-= (xhatmin k)

(best-prior-estimate-of-x k)))
:hints ...)

Now, consider the expression

(result-form-error-derivative (gain k) (xhatmin k) k)

We wish to show that this expression is equal to 0. Opening up the expression
yields the sum

2E[(xk − xk)× (zk −Hkxk)T] +
2Kk × E[(zk −Hkxk)× (zk −Hkxk)T]. (27)

14



We proceed by considering the first term of the sum:

E[(xk − xk)× (zk −Hkxk)T]
= −E[(xk − xk)× (Hkxk −Hkxk + vk)T] (28)
= −E[(xk − xk)× (Hkxk −Hkxk)T]− E[(xk − xk)× vk

T] (29)
= −E[(xk − xk)× (Hkxk −Hkxk)T] (30)
= −E[(xk − xk)× (xk − xk)THk

T] (31)
= −E[(xk − xk)× (xk − xk)T]×Hk

T (32)
= −P kHk

T (33)

Next, we consider the second term of the sum:

Kk × E[(zk −Hkxk)× (zk −Hkxk)T]
= Kk × E[(Hkxk −Hkxk + vk)× (Hkxk −Hkxk + vk)T] (34)
= Kk × E[Hk(xk − xk)× (xk − xk)THk

T +
Hk(xk − xk)vk

T + vk(xk − xk)THk
T + vkvk

T] (35)
= Kk × (HkE[(xk − xk)× (xk − xk)T]Hk

T + E[vkvk
T]) (36)

= Kk × (HkP kHk
T + Rk) (37)

= P kHk
T × (HkP kHk

T + Rk)−1 × (HkP kHk
T + Rk) (38)

= P kHk
T (39)

The last step is justified only when the matrix (HkP kHk
T+Rk) is non-singular.

As stated earlier, this is assumed explicitly in the ACL2 proof.
With the two results above, it follows that the expression

(result-form-error-derivative (gain k) (xhatmin k) k)

is indeed equal to the zero matrix. The ACL2 theorem is as follows:

(defthm gain-minimizes-error
(implies (and (integerp k) (<= 0 k))

(m-= (result-form-error-derivative (gain k) (xhatmin k) k)
(m-zero (n) (m))))

:hints ...)

Now it is easy to show that x̂k is of the form given by result-form. This,
together with gain-minimizes-error, is sufficient to show that x̂k is the op-
timal estimate for xk. The proof simply uses gain-minimizes-error and
the lemma that xk is the best a priori estimate of xk, which was proved in
xhatmin=best-prior-almost:

(defthm xhat=best-estimate
(implies (and (integerp k)

(<= 0 k))
(m-= (xhat k)

(best-estimate-of-x k)))
:hints ...)

15



Once this theorem is found, it is trivial to combine it with xhatmin=best-prior-almost
to find that xk is the best a priori estimate of xk, with no assumptions on x̂k:

(defthm xhatmin=best-prior
(implies (and (integerp k)

(<= 0 k))
(m-= (xhatmin k)

(best-prior-estimate-of-x k)))
:hints ...)

This concludes the formalization in ACL2 of the mathematical theory of
Kalman Filters. In the next section, we will use this formalization to prove a
specific algorithm computing the Kalman Filter is correct.

5 Verifying a Kalman Filter Loop Invariant

The following program, taken from [11] illustrates a Kalman Filter implementa-
tion as may be generated by NASA’s software:

input xhatmin, pminus;
for k ← 0..n do

gain ← pminus * mtrans(h) * minv(h * pminus * mtrans(h) + r);
xhat ← xhatmin + (gain * (z - (h * xhatmin)));
pplus ← (id(n) - gain * h) * pminus;
xhatmin ← phi * xhat;
pminus ← phi * (pplus * mtrans(phi)) + q;

end for
From first principles, proving the correctness of this program would be very

hard. But using the mathematical theory developed in the previous sections,
we will be able to present a simple proof of the correctness of this loop. In
fact, the proof itself is little more than an association between the variables in
the program and the mathematical entities of the previous sections, and this
association can be made in the form of hints that are automatically generated
along with the code. Such an approach is already in use to help human readers
perform code inspections of the generated code.

To prove this algorithm correct in ACL2, we will convert the code to ACL2’s
functional notation. We chose to represent the body of the loop as a Lisp
function that takes two arguments, corresponding to xk and P k, and returns
five arguments, corresponding to Kk, x̂k, Pk, xk+1, and P k+1:

(defun kalman-loop-body (xhatmin-prev pminus-prev k)
(let* ((gain (m-* pminus-prev

(m-* (m-trans (h k))
(m-inv (m-+ (m-* (h k)

(m-* pminus-prev
(m-trans (h k))))

(r k))))))

16



(xhat (m-+ xhatmin-prev
(m-* gain

(m-- (z k)
(m-* (h k) xhatmin-prev)))))

(pplus (m-* (m-- (m-id (n))
(m-* gain (h k)))

pminus-prev))
(xhatmin (m-* (phi k) xhat))
(pminus (m-+ (m-* (phi k)

(m-* pplus
(m-trans (phi k))))

(q k))))
(mv gain xhat pplus xhatmin pminus)))

The correctness of this code can be verified by the following theorem:

(defthm kalman-loop-invariant
(implies (and (integerp k)

(<= 0 k)
(equal xhatmin-prev (xhatmin k))
(equal pminus-prev (pminus k)))

(mv-let (gain xhat pplus xhatmin pminus)
(kalman-loop-body xhatmin-prev pminus-prev k)
(and (equal gain (gain k))

(equal xhat (xhat k))
(equal pplus (pplus k))
(equal xhatmin (xhatmin (1+ k)))
(equal pminus (pminus (1+ k))))))

:hints ...)

The omitted hints simply invoke five lemmas that establish the relationship
between each program variable and its associated mathematical entity. All of
these lemmas were easy to automate; in fact, the decision to have the lemmas,
as opposed to simply introducing the theorem directly, was based solely on style.

6 The Hidden Assumptions

6.1 Existence of Inverses

As mentioned in the previous section we make the explicit assumption that cer-
tain matrices are non-singular. Specifically, we make the following assumption:

(skip-proofs
(defthm non-singular-gain-component-2
(not (m-singular (m-+ (r k)

(m-* (h k)
(m-* (pminus k)

(m-trans (h k)))))))))

17



In principle, this theorem could be moved into the encapsulate defining the
functions r, h, and pminus. But in a pragmatic sense, this is not necessary. At
each step, the algorithm computes the inverse of this matrix. If the inverse can
be found, the matrix is indeed non-singular. On the other hand, if the inverse
can not be found, the algorithm will recognize the situation and return an error.

However, handling the error in the proof would complicate the entire formal-
ization. One thing we would like to see is support for exceptions in ACL2. In
particular, if the given matrix were ever not to have an inverse, the code could
throw an exception. Proofs would be partial. In particular, when the theorem

(defthm thm
form)

is proved in ACL2, it means that the evaluation of form is not nil. With
support for exceptions, ACL2 could introduce the event

(defweakthm thm2
form2)

which asserts that either form2 is not equal to nil or the evaluation of form2
results in an exception. This would mark a significant departure from ACL2
practice, and we present it to the workshop for discussion.

It should also be noted that under suitable starting conditions, all the ma-
trices of the above form can be shown to be positive definite, and hence to have
inverses. Hence, it would be possible to address this issue directly at the expense
of introducing more matrix theory.

6.2 Determining Optimality

Another assumption used in the proof concerns the optimality criterion for the
solution. In particular, we have the following axiom in ACL2:

(defaxiom best-estimate-of-x-def
(implies (and (m-= (best-prior-estimate-of-x k) Xp)

(m-= (result-form-error-derivative y Xp k)
(m-zero (n) (m))))

(m-= (best-estimate-of-x k)
(result-form y Xp k))))

This axiom makes two assumptions:

1. The function result-form-error-derivative is zero precisely at the
critical points of result-form. This is essentially a claim that it really
computes the derivative of the error in result-form (as its name sug-
gests), but keep in mind that derivatives here are in the context of matrix
calculus.

2. All critical points of result-form are in fact minimums.

18



To relieve the first assumption would require a formalization of matrix calculus
in ACL2. Our prior experience formalizing aspects of univariate calculus sug-
gests that this in fact possible. However, since the complexity of matrix calculus
is far greater than that of the univariate case, our experience also suggests that
such an undertaking will be a long one. For pragmatic reasons, therefore, we
decided not to undertake this formalization at this time, choosing instead to
evaluate whether the formalization would pay off in applications.

The second assumption is more troubling. Again, the reason why this is valid
lies in the fact that the matrices in question are positive definite. However, the
proof effort required to show this is considerable.

6.3 Random Variables

The most troubling assumption lies in the definition of the function m-mean,
or more precisely in the treatment of random variables such as vk. A random
variable is a function, but here it is formalized as a number.

So the essential question is the following: How can we formalize random
variables in ACL2? A possible solution is suggested by the formalization of cal-
culus in [5]. In that paper, derivatives were formalized by having two functions,
f and fd and explicitly adding the theorem that fd was the derivative of f . In
particular, no (second-order) “derivative” operator was ever defined.

Similarly, we may be able to reason about the random variable x as the
function x(k), the kth observation of the variable x. The function xm would
be introduced and shown to be related to x(k) in a way that corresponds to
the intuitive assertion xm = E[x]. This relationship may be captured in ACL2
using non-standard probability theory [10].

7 Conclusions

We have used ACL2 to verify a program that computes the Kalman Filter.
To simplify the proof of the program, we separated the mathematical argument
regarding the correctness of the Kalman Filter from the correctness of the actual
algorithm. The correctness of the actual algorithm followed easily.

It would be premature, however, to expect the algorithm correctness proof
to be so simple each time. The main challenge of the proof presented in section 4
was in associating the variables of the program with the relevant mathematical
entities. However, in a realistic setting this association may be considerably
more difficult. For one thing, the mathematical entities may not appear as sim-
ple variables in the code. The program in section 5 used mathematical operators,
such as m-+ and m-* directly. However, a program may choose to implement
matrix addition or matrix multiplication quite differently: instead of calling
functions that can be equated with these operations, a program may perform
the operations in-line, even to the extent of separating a (fixed-length) vector
into its scalar values and putting each scalar in a separate program variable.

19



The formalization of the mathematics behind the Kalman Filter in ACL2
posed a serious challenge. Formalizing linear algebra proved to be tractable, al-
though figure 1 clearly illustrates the enormity of the task. We do not have com-
plete formalizations of the remaining mathematics needed to derive the Kalman
Filter, namely matrix calculus and probability theory. Formalizing matrix cal-
culus should be straightforward in principle, but it will be a significant task
in practice. Formalizing probability theory in ACL2 poses a bigger conceptual
challenge, and it may require a significant research component.

References

[1] R. G. Brown and P. Hwang. Introduction to Random Signals and Applied
Kalman Filtering: with MATLAB Excercises and Solutions. John Wiley &
Sons, 1997.

[2] J. Casti. Five More Golden Rules. Wiley, 2000.

[3] M. Clabel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer,
and J. Quesada. Maude: specification and programming in rewriting logic.
Technical report, SRI International, January 1999.

[4] J. Cowles, R. Gamboa, and J. Van Baalen. Using ACL2 arrays to formalize
matrix algebra. Under review, 2003.

[5] R. Gamboa. Continuity and differentiability in ACL2. In M. Kaufmann,
P. Manolios, and J S. Moore, editors, Computer-Aided Reasoning: ACL2
Case Studies, chapter 18. Kluwer Academic Press, 2000.

[6] R. E. Kalman. A new approach to linear filtering and prediction problems.
Transactions of the ASME–Journal of Basic Engineering, 82(Series D):35–
45, 1960.

[7] M. Kaufmann, P. Manolios, and J S. Moore. Computer Aided Reasoning:
An Approach. Kluwer Academic Publishers, 2000.

[8] B. Kuo. Digital Control Systems. Holt, Rinehart and Winston, 1980.

[9] P. S. Maybeck. Stochastic models, estimation, and control, volume 141 of
Mathematics in Science and Engineering. Academic Press, 1979.

[10] E. Nelson. Radically Elementary Probability Theory. Princeton University
Press, 1987.

[11] G. Rosu and J. Whittle. Towards certifying domain-specific properties of
synthesized code. In Proc of the 17th International Conference on Auto-
mated Software Engineering, 2002.

[12] H. Stark and J. Woods. Probability, Random Processes, and Estimation
Theory for Engineers. Prentice Hall, 1986.

20



[13] G. Welch and G. Bishop. The kalman filter home page. http://www.cs.
unc.edu/~welch/kalman.

21


