
Adding a typing Adding a typing
mechanism to ACL2mechanism to ACL2
Vernon AustelVernon Austel
IBMIBM

What a typed ACL2 might look like

Vague proposal concerning
how to change ACL2 to allow
experimentation with type systems

allow macros to take the ACL2 world
 and state as parameters

this could also be used for other purposes

There is no time to describe my type system
that would be boring anyway

OutlineOutline

Let's avoid the question...

It is unreasonable for ACL2 to suddenly
start requiring functions to be typed

It is probably not useful to have a typed and untyped mode
(where either all functions are typed or none are).

Untyped functions and theorems must be interoperable
with typed ones.

The internal representation must be the same
(aside from some extra information).

To type or not to type?To type or not to type?

How would types affect me?How would types affect me?

Most of the time, the type system will infer a type
for your functions; you may occasionally have to
add type-annotations or change functions to help
the type system infer their type

If the type system infers hypotheses for theorems,
you may be able to stop writing (true-listp l)
and (integerp n) all the time

If the type system filters such type hypotheses
from the proof output, you don't have to look at them

This is all up to you and your type system

Most of the time, you shouldn't need to think about
types, just as you don't think about type-prescription
lemmas.

If the type system can't derive one for a function,
you might have to tell it, perhaps using a new xargs
keyword:
(defun myappend (x y)
 (declare (xargs :type ((list 0) (list 0) (list 0))))
 (if (endp x) y
 (cons (car x) (myappend (cdr x) y))))

Or perhaps with an event:
(deftype myappend ((list 0) (list 0) (list 0)))

Function typesFunction types

This event fails:
(defthm myappend-nil
 (equal (myappend x nil) x))

But as a typed theorem, it might succeed:
(defthmt myappend-nil
 (equal (myappend x nil) x))

That's because the type system
might generate this as the goal to prove:
 (implies (true-listp x)
 (equal (myappend x nil) x))

Adding type hypotheses to theoremsAdding type hypotheses to theorems

Type-checking functions helps catch annoying
little bugs quickly.

A type system takes care of adding type hypotheses
to theorems, so you can forget about them.

This doesn't affect the proof engine or the logic.
It can have no affect on soundness.

A typed theorem or function is no different from an
untyped one; they are interoperable.
A type system may not be able to work with untyped
functions, but you can always assign a type to a
function after it was defined.

That's itThat's it

No one knows what kind of type system would be
acceptable to the ACL2 community. It would
probably take a lot of experimentation to find out.

The ACL2 maintainers don't have time for this.

The hope is that there is a way that the maintainers
could modify ACL2 so that ordinary users could
experiment with types without compromising
the soundness of the system.

The system changes must not involve a lot of work.

The goal: allowing an untrusted type systemThe goal: allowing an untrusted type system

The problem is that a type system needs access to the
world (and to state for efficient macro expansion).

That means the type system cannot be implemented
just using macros; macros do not have access
to the world or state, only functions do.
(Macros can expand into function calls that
take state as a parameter, though).

However, user-defined functions cannot occur
within encapsulate and inside books; only
embedded events (and macros) are permitted.

Let us review why this is.

We can already almost do thatWe can already almost do that

events inside a book are processed twice:
during certification (in certify-book)
during execution of include-book

Roughly speaking, certify-book checks that the
theorem events are true, and include-book
just modifies the current world by processing
the events in the book.

include-book will execute using a different world
than certify-book; the system must ensure that
the same functions and theorems
are added when include-book is executed.

include-bookinclude-book

Picture of include-book processingPicture of include-book processing

book events

certify-book include-book

certification world some other world

certification world +
new theorems from book

some other world +
new theorems from book

This is slightly modified from the example in the
ACL2 documentation. It must not be allowed.

(if (ld-skip-proofsp state)
 (defthm thm-for-second-pass nil) ;; include-book
 (defthm thm-for-first-pass t)) ;; certify-book

So: we can only use code that is trusted to do the
right thing in both passes. Embedded events are
trusted to do this. (Other code may as well,
but how would we be sure?)

The problem - code may do different The problem - code may do different
things in the two passesthings in the two passes

The ACl2 documentation does not say so,
but macros are not allowed access to state
or to the world for the same reasons.

(defmacro unsound (state)
 (if (ld-skip-proofsp state)
 '(defthm thm-for-second-pass nil)
 '(defthm thm-for-first-pass t)))

This would cause problems because
 (unsound state)
would expand to different things in the two passes.

What about macros?What about macros?

Yes. The question is how much work it would
require, and how clean the result would be.

The central problem is that macros might expand
to different things in the two passes.

We could avoid that if we save the expansion from
the first pass and re-use it in the second pass.

include-book would not read the events in the
book, but rather a file that certify-book generates.

Can we avoid that problem?Can we avoid that problem?

Re-using the macro expansionRe-using the macro expansion

book events

certify-book include-book

certification world some other world

certification world +
new theorems from book

some other world +
new theorems from book

macro-expanded
book events

expand
macros

The second pass imposes the same
restrictions as the first pass; the macro-expanded
version will fail these syntactic checks
(embedded events are themselves macros).

(defthm prop1 t)

expands to:

(defthm-fn 'prop1 t state ...)

which is not an embedded event.

What's the problem?What's the problem?

Drop these checks in the second pass?
After all, the code passed the check once already.
There remains the sensative problem of ensuring
that the macro expansion saved from certification
really does correspond to the book (file system security).

Just use the expansions as a check in the second pass?
That is, expand macros as usual in the second pass,
but check the result of the expansion with
the saved expansion; if there is a difference, fail.
There must be a 1-1 correspondence. All event macros
must expand the same way in both passes ("local").

Don't expand embedded event macros?
Complicates macro expansion.

Possible solutionsPossible solutions

...for something you really don't care about?
This would be useful for any system that needs
access to function bodies to generate theorems.

Example: inferring measure theorems
(defun parse-type-pointers (basetype input)
 (if (eq (car input) '*)
 (parse-type-pointers (mk-ptr-type basetype) (cdr input))
 (mv basetype input)))

(infer-measure-thm parse-type-pointers)
==>
(defthm acl2-count-parse-type-pointers
 (<= (acl2-count (mv-nth 1 (parse-type-pointers types input)))
 (acl2-count input))
 :rule-classes (:linear))

Sounds like a lot of work...Sounds like a lot of work...

SummarySummary
Adding a type system would inconvenience no one
Typed and untyped code would be interoperable
The type system need not be trusted
It only poses a soundness concern for
embedded events
non-trivial changes to include-book and
encapsulate would be required
the change would also be useful for other purposes
I don't know what kind of change
would be acceptable

