Contributions to the
Theory of Tail Recursive Functions

John Cowles

Ruben Gamboa
University of Wyoming
{cowles,ruben}@cs.uwyo.edu

SUMMARY
Part 1

Tail recursive definitional axioms have
desirable properties:

e always consistent to add a tail recursive
definitional axiom

P. Manolios and J S. Moore. Partial
functions in ACL2, J. Automated
Reasoning 31 (2003), 107-127.

e existence of unique total function
satisfying a tail recursive definitional
axiom ensures the recursion always halts

e neither true about arbitrary recursive
definitional axioms.

What is tail recursion?

A function is tail recursive if its definition is
tail recursive.

The definition of a function £ is tail
recursive provided

e the body of the definition contains at
least one recursive call to £

e each such recursive call to £ is tail
recursive.

Here is what it means for a recursive call to
be tail recursive in a definition:

(defun f (x1...%Xp)
body)

Assume body contains no macros or lambda
applications:

e expand all macros in body

e reduce the lambda applications by
B-reduction.

Think of the expanded body as an
expression tree.

A recursive call of £ in body is tail recursive
just in case

1. the call to £ is not on the test branch of
any if.

2. On any branch containing the call to f,
only if may appear above the call to f.

3-a

Example 1
(defun f (x)
(if (£ x)
X

X))

The recursive call is not tail recursive.

The call to £ is on the test branch of if.

Example 2

(defun f (x)
(if (zp x)
1
(* x

(f (- x1)))))

The recursive call is not tail recursive.

* appears above f in the expression tree

Example 3

(defun M91 (x)
(declare
(xargs :guard
(integerp x)))
(if (> x 100)
(- x 10)
(M91
(M91 (+ x 11)))))

There are two recursive calls to M91 in this
body.

e [he outer call in (M91 (M91 (+ x 11))) is
tail recursive.

e The inner call (M91 (+ x 11)) is not tail
recursive.

¢ T he outer call to M91 appears above
this inner call in the expression tree.

4-b

Example 4

(defun 3x+1 (x)
(declare
(xargs :guard (natp x)))
(if (<= x 1)
X
(if (evenp x)
(3x+1 (/ x 2))
(3x+1
(+ (x 3 x) 1)))))

The two calls to 3x+1 in this body are both
tail recursive.

Tail Recursive Functions

Let test, base, and step be unary functions.

Consider the following proposed tail recursive
definition.

(defun f (x)
(if (test x)
(base x)
(f (step x))))

This recursive call to £ is simple and explicitly
given.

(defun f (x)
(if (test x)
(base x)
(f (step x))))

Possible to be explicit and very precise about
the meanings of the following:

e A total function satisfies the defining tail
recursion axiom for this definition.

e [he tail recursion in this definition
terminates for a given input.

e [he tail recursion in this definition
satisfies a measure conjecture.

Possible to state these concepts in ACL2.

Therefore proofs of the theorems given later
can be mechanically verified using ACL2.

5-a

(defun f (x)
(if (test x)
(base x)
(f (step x))))

A total ACL2 function f satisfies the
defining tail recursion axiom for this
definition provided the following is true about

every x.

(equal (f x)
(if (test x)
(base x)
(f (step x))))

Pete and J's defpun paper shows that there
IS always at least one total ACL2 function
satisfying the defining tail recursion axiom
for any such tail recursive definition.

(defun f (x)
(if (test x)
(base x)
(f (step x))))

The tail recursion in this definition
terminates for a given x provided the
following holds

In(test(step™ x)).

The tail recursion in this definition always
halts provided the tail recursion terminates
for all x.

(defun f (x)
(if (test x)
(base x)
(f (step x))))

The tail recursion in this definition satisfies a
measure conjecture provided there is a
well-founded binary relation rel, on the set of
objects recognized by some predicate mp, and
a measure m satisfying

(and (mp (m x))
(implies (not (test x))
(rel (m (step x))
(m x))))

6-b

The binary relation rel is well-founded on
the set of objects recognized by mp iff there is
a rel-order-preserving function fn that
embeds objects recognized by mp into ACL2’s
ordinals:

(and (implies (mp x) (0-p (fn x)))
(implies (and (mp x)
(mp y)
(rel x y))
(0< (fn x) (fn y))))

In ACL2 Version 2.9,

e 0-p recognizes the ordinals up to epsilon-0

e 0< is the well-founded less-than relation
on those ordinals

(defun f (x)
(if (test x)
(base x)
(f (step x))))

Theorem 1 The following are equivalent for
any function with a tail recursive definition
like that for £.

1. The recursion satisfies a
nonnegative-integer-valued measure
conjecture.

2. The recursion satisfies a measure
conjecture.

3. The recursive defining axiom is satisfied
by an unique total function.

4. The recursion always halts.

3. The recursive defining axiom is satisfied
by an unique total function.

4. The recursion always halts.

The equivalence 3 < 4 suggests one way to
show the famous “3z + 1" function always
terminates on all natural number inputs:

It is sufficient to show the defining axiom

(equal (3x+1 x)

(if (k= x 1)
X
(3x+1 (if (evenp x)

(/ x 2)
(+ (*x 3 x) 1)))))

IS satisfied by only one total function on the
nonnegative integers.

The termination of this function on all
nonnegative integer inputs remains an open
problem.

How much of Theorem 1 holds for recursive
definitions that may not be tail recursive?

Proposition 1 The following are equivalent
for any function with a recursive definition.

1. The recursion satisfies a
nonnegative-integer-valued measure
conjecture.

2. The recursion satisfies a measure
conjecture.

4. The recursion always halts.

Proposition 2 The following implications
hold for any function with a recursive
definition.

Each of these

1. The recursion satisfies a
nonnegative-integer-valued measure
conjecture.

2. The recursion satisfies a measure
conjecture.

4. The recursion always halts.

implies

3. The recursive defining axiom is satisfied
by an unique total function.

Proposition 3 The following implications
could fail for any function with a recursive
definition.

3. The recursive defining axiom is satisfied
by an unique total function.

implies each of these

1. The recursion satisfies a
nonnegative-integer-valued measure
conjecture.

2. The recursion satisfies a measure
conjecture.

4. The recursion always halts.

9-b

Counter Example

The equation

(equal (f x)
(if (f x)
X

X))

is satisfied by only one total function, namely
the identity function,

but the recursion suggested by the equation
does not terminate nor satisfy any measure
conjecture.

SUMMARY
Part 2

(equal (f x)
(if (test x)
(base x)
(f (step x))))

Theorem 2 Let a and b be constants.
Suppose that the only constraint on the
function £ that mentions £ is the defining tail
recursive axiom for £. If ACL2 can prove
(equal (f a) b), then ACL2 can also prove,
that the recursion for £ terminates on input a.

This Meta Theorem has application to Tail
Recursive Interpreters.

10

SUMMARY
Part 3

Obtain result about Knuth's generalization of
McCarthy's 91 Function as a corollary of
more general results about reflexive tail
recursive functions.

Reflexive Tail Recursion:
(defun f (x)
(if (test x)
(base x)
(f (step x))))

(step x) mentions £

Nested recursive calls are sometimes called
reflexive.

ACL2 can verify the following two theorems.
11

Theorem 3 Let ¢ be a positive integer and

let test, base, and step be total functions
such that

¢ (implies (test (base x))
(test x))

e base and step commute:

(equal (base (step x))
(step (base x)))

e cither the recursion with respect to

base{=¢1) o step and test always halts OR
it never halts when x satisfies
(not (test x)):

[Vx3n(test([basel 1) o step]® x))]
OR

[VxVn((not(test x)) =
(not(test([base(_01)c>stepF1X))))]

11-a

Theorem 3 continued

T hen there is a total function £ that satisfies
both the reflexive tail recursive equation

(equal (f x)
(if (test x)
(base x)
(f¢ (step x))))

and the simpler tail recursive equation
(equal (f x)
(if (test x)

(base x)
(f (base(—c1) (step x))))

11-b

Theorem 4 Let ¢ be a positive integer and
let £, test, base, and step be total functions
such that

e f s reflexive tail recursive:

(equal (f x)
(if (test x)
(base x)
(f¢ (step x))))

e (implies (test (base x))
(test x))

e base and step commute:

(equal (base (step x))
(step (base x)))

e recursion with respect to step and test
always halts:
Vxdn(test(step™ x))

11-c

T heorem 4 continued

Then £ also satisfies the simpler tail recursive
equation

(equal (f x)
(if (test x)
(base x)
(f (base(—c1) (step x))))

11-d

Corollary 1 (Knuth) Let ¢ be a positive
integer and let a,b > 0,d be real numbers.

1. There is a total function on the reals
satisfying the reflexive tail recursive
equation

(equal (K x)
(if > x a)
(- x b)
(K¢ (+ x d))))

2. If (< (x (- c¢c 1) b) d) then there is an
unique function on the reals satisfying the
above reflexive tail recursive equation for
K.

11-e

Corollary 2 There is an unique function on
the reals satisfying the reflexive tail recursive
equation for McCarthy’s 91 function,

(equal (M91 x)
(if (> x 100)
(- x 10)
(M91 (M91 (+ x 11)))))

11-f

