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AbstratIt is shown that the existene of an unique total funtion satisfyinga tail reursive de�nitional axiom ensures the reursion always halts.This is in ontrast to the general ase, when the adjetive tail neednot apply to the reursion: The existene of an unique total funtionsatisfying a (general) reursive de�nitional axiom need not fore thereursion to always terminate.A similar result is shown to have appliation to Tail ReursiveInterpreters.The result reported in [1℄ about Knuth's generalization of M-Carthy's 91 Funtion is obtained in a di�erent way, as a orollary ofmore general results about reexive tail reursive funtions.IntrodutionTail reursive de�nitional axioms have desirable properties not enjoyed byarbitrary reursive de�nitional axioms. Foremost among these properties isonsisteny of the axiom. To ensure onsisteny, ACL2's de�nitional prin-iple requires that the reursion in a proposed de�nitional axiom satisfy anappropriate measure onjeture. In [5℄, P. Manolios and J S. Moore show itis always onsistent to add a tail reursive de�nitional axiom (even when thereursion does not satisfy any appropriate measure onjeture).1



ACL2's de�nitional priniple ensures more than onsisteny. Satisfationof an appropriate measure onjeture means that the reursion always haltsand that implies there is one and only one total funtion satisfying the de�ni-tional axiom. The onverse impliation, in general, does not hold. That is,the existene of an unique total funtion satisfying a reursive de�nitionalaxiom does not fore the reursion to always terminate.However, the afore mentioned onverse impliation does hold for tail re-ursive de�nitional axioms:The existene of an unique total funtion satisfyinga tail reursive de�nitional axiom does mean the reursion always halts.Tail ReursionWhat is tail reursion? A funtion is said to be tail reursive if its de�nitionis tail reursive. The de�nition of a funtion f is tail reursive provided thereis at least one reursive all to f in the body of the de�nition and eah suhreursive all to f is tail reursive.Here is what it means for a reursive all to be tail reursive in a de�nitionsuh as this one:(defun f (x1 : : : xn)body)Assume body ontains no maros or lambda appliations. That is, expand allmaros in body and redue the lambda appliations by �-redution. Thinkof the expanded body as an expression tree. A reursive all of f in body istail reursive just in ase these two onditions are met.1. The all to f is not on the test branh of any if.2. On any branh ontaining the all to f, only if may appear above theall to f.Examples.� (defun f (x)(if (f x)xx)) The all to f in this body violatesthe �rst ondition above, so theall is not tail reursive.2



� (defun f (x)(if (zp x)1(* x(f (- x 1))))) The all to f in this body violatesthe seond ondition above (* ap-pears above f in the expressiontree), so the all is not tail reur-sive.� (defun A (x y)(delare(xargs :guard(and (natp x)(natp y))))(if (zp x)(+ y 1)(if (zp y)(A (- x 1) 1)(A (- x 1)(A x(- y 1))))))

There are three alls to A in thisbody. The all (A (- x 1) 1) andthe outer all in (A (- x 1)(A x(- y 1))) are both tail reursive.The inner all (A x (- y 1)) isnot tail reursive beause the outerall to A appears above this innerall in the expression tree.
� (defun M91 (x)(delare(xargs :guard(integerp x)))(if (> x 100)(- x 10)(M91(M91 (+ x 11)))))

There are two reursive alls to M91in this body. The outer all in (M91(M91 (+ x 11))) is tail reursive.The inner all (M91 (+ x 11)) isnot tail reursive beause the outerall to M91 appears above this innerall in the expression tree.� (defun 3x+1 (x)(delare(xargs :guard (natp x)))(if (<= x 1)x(if (evenp x)(3x+1 (/ x 2))(3x+1(+ (* 3 x) 1)))))
The two alls to 3x+1 in this bodyare both tail reursive alls.
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Tail Reursive FuntionsLet test, base, and step be unary funtions. Consider the following pro-posed tail reursive de�nition.(defun f (x)(if (test x)(base x)(f (step x))))Sine this reursive all to f is simple and expliitly given, it is possible tobe expliit and very preise about the meanings of the following with respetto this proposed de�nition:� A total funtion satis�es the de�ning tail reursion axiom for this def-inition.� The tail reursion in this de�nition terminates for a given input.� The tail reursion in this de�nition satis�es a measure onjeture.It possible to state these onepts in ACL2. Therefore proofs of the theorems(but not the propositions nor the orollaries) given below were mehaniallyveri�ed using ACL2.A total ACL2 funtion f is said to satisfy the de�ning tail reursion axiomfor the proposed de�nition provided the following is true about every x.(equal (f x)(if (test x)(base x)(f (step x))))P. Manolios and J S. Moore's defpun paper [5℄ shows that there is alwaysat least one total ACL2 funtion that satis�es the de�ning tail reursion axiomfor any suh proposed tail reursive de�nition.The tail reursion in the above proposed de�nition is said to terminate for agiven x provided the following holds 9n(test(stepn x)). The tail reursion inthe above proposed de�nition is said to always halt provided the tail reursionterminates for all x.The tail reursion in the above proposed de�nition is said to satisfy ameasure onjeture provided there is a well-founded binary relation rel, onthe set of objets reognized by some prediate mp, and a measure m satisfying4



(and (mp (m x))(implies (not (test x))(rel (m (step x))(m x))))The binary relation rel is well-founded on the set of objets reognized by mpjust in ase there is a rel-order-preserving funtion fn that embeds objetsreognized by mp into ACL2's ordinals:(and (implies (mp x)(O-p (fn x)))(implies (and (mp x)(mp y)(rel x y))(O< (fn x)(fn y))))In ACL2 Version 2.9, O-p reognizes the ordinals up to epsilon-0 and O< isthe well-founded less-than relation on those ordinals.Theorem 1 The following are equivalent for any funtion with a tail reur-sive de�nition like that for f.1. The reursion satis�es a nonnegative-integer-valued measure onje-ture.2. The reursion satis�es a measure onjeture.3. The reursive de�ning axiom is satis�ed by an unique total funtion.4. The reursion always halts.Proof. Clearly 1 ) 2 .2 ) 3 . Assume the reursion in the de�nition of f satis�es a measureonjeture. Show that any two funtions, say f and g, that satisfythe de�ning tail reursive axiom for f are equal:Assume f and g satisfy these equations.(equal (f x) (equal (g x)(if (test x) (if (test x)(base x) (base x)(f (step x)))) (g (step x))))5



[The equation involving g is what is meant by \g satis�es thede�ning tail reursive axiom for f."℄Use the indution suggested by the de�nition of f to prove (equal(f x)(g x)). The base ase is (test x) ) (equal (f x)(gx)). The indution step, (not (test x)) ) (equal (f x)(gx)), follows from the indution hypothesis, (not (test x)) )(equal (f (step x))(g (step x))).3 ) 4 . Assume the reursive de�ning axiom for f is satis�ed by anunique total funtion. Now losely follow the onstrution inManolios and Moore's defpun paper [5℄: De�ne a \loked" ver-sion of f.(defunf_n (x n)(delare (xargs :measure (nfix n)))(if (or (zp n) (test x))(base x)(f_n (step x)(- n 1))))Manolios and Moore use f_n to onstrut a total funtion thatsatis�es the reursive de�ning axiom for f. Slightly modify theironstrution to de�ne two apparently di�erent funtions that sat-isfy the reursive de�ning axiom for f.Use defhoose to let (n_h x) be an n suh that (test(stepnx)),if suh an n exists. The value of n_h is not spei�ed otherwise.(defun g (x) (defun h (x)(if (test (step(n h x) x)) (if (test (step(n h x) x))(f_n x (n_h x)) (f_n x (n_h x))nil)) t))It should be fairly obvious that both g and h satisfy the de�ningaxiom for f. Sine there is exatly one funtion satisfying thede�ning axiom for f, it must be the ase that g = h, whih meansthat 8x(test(step(n h x)x)):4 ) 1 . Assume 8x9n(test(stepn x)). Let m(x) be the least nonneg-ative integer n suh that (test(stepn x)). Then whenever (not(test x)), it is the ase that (< (m (step x))(m x)).6



This theorem suggests one way to show that the famous \3x+1" funtionalways terminates on all natural number inputs: It is suÆient to show thede�ning axiom(equal (3x+1 x)(if (<= x 1)x(3x+1 (if (evenp x)(/ x 2)(+ (* 3 x) 1)))))is satis�ed by only one total funtion on the nonnegative integers. Thetermination of this funtion on all nonnegative integer inputs remains anopen problem.The following propositions show how muh of Theorem 1 holds for re-ursive de�nitions that may not be tail reursive.Proposition 1 The following are equivalent for any funtion with a reur-sive de�nition.1. The reursion satis�es a nonnegative-integer-valued measure onje-ture.2. The reursion satis�es a measure onjeture.4. The reursion always halts.Proof. Clearly 1 ) 2 .Sine all desending hains, of elements related by a well-founded rela-tion, are �nite; 2 ) 4 .4 ) 1 . Assume the reursion always halts. Then the Canonial Mea-sure (essentially the minimal stak depth required for omputingthe value of the funtion on a given input, using the body of thereursive de�nition.) desribed by M. Kaufmann and J S. Moore,in [2℄, is a nonnegative-integer-valued measure.Proposition 2 The following impliations hold for any funtion with a re-ursive de�nition.Eah of these 7



1. The reursion satis�es a nonnegative-integer-valued measure onje-ture.2. The reursion satis�es a measure onjeture.4. The reursion always halts.implies3. The reursive de�ning axiom is satis�ed by an unique total funtion.Proposition 3 The following impliations ould fail for any funtion witha reursive de�nition.3. The reursive de�ning axiom is satis�ed by an unique total funtion.implies eah of these1. The reursion satis�es a nonnegative-integer-valued measure onje-ture.2. The reursion satis�es a measure onjeture.4. The reursion always halts.Proof. The equation(equal (f x)(if (f x)xx))is satis�ed by only one total funtion, namely the identity funtion, butthe reursion suggested by the equation does not terminate nor satisfyany measure onjeture.Theorem 2 Let a and b be onstants. Suppose that the only onstraint onthe funtion f that mentions f is the de�ning tail reursive axiom for f.If ACL2 an prove (equal (f a) b), then ACL2 an also prove, that thereursion for f terminates on input a.8



Proof. Assume (equal (f a) b) is a theorem.One more the onstrution in Manolios and Moore's defpun paper [5℄is losely followed: De�ne a \loked" version, suh as f_n from above,of f. Choose any onstant  suh that  6= b.Use f_n and  to onstrut a total funtion that satis�es the reursivede�ning axiom for f.(defun f (x)(if (test (step(n h x) x))(f_n x (n_h x))))One again, it should be fairly obvious that f satis�es the de�ningaxiom for f. That is, the following holds.(equal (f x)(if (test x)(base x)(f (step x))))By funtional instantiation, (equal (f a) b) is a theorem. Sine  6=b, it follows from the de�nition of f that (test(step(n h a)a)).Tail Reursive InterpretersThis setion starts by losely following a similar setion in Manolios andMoore's defpun paper [5℄.An important lass of tail reursive funtions onsists of the \state ma-hine interpreters" traditionally used in ACL2 to give operational semantis.We onsider one suh interpreter, alled WyoM1. WyoM1 was used at theUniversity of Wyoming while teahing a lass, inspired by a similar lass atthe University of Texas, on formalizing the Java Virtual Mahine in ACL2.WyoM1 is very similar to an interpreter known as M2 at UT.A WyoM1 state is a pair onsisting of a all stak and a list of funtionde�nitions. The all stak is a stak of frames, eah frame orresponding toan ativation of some de�ned funtion. A frame ontains a program ounter,the ode for the funtion, bindings for the formal and loal variables of the9



funtion, and an operand stak. Eah funtion de�nition ontains the name,list of formal arguments, and list of instrutions for some funtion.Here is the de�nition for a reursive funtion fat implementing fatorial.(defonst *fat-def*'(fat (n)(load n) ;; 0(ifgt 3) ;; 1(push 1) ;; 2(ret) ;; 3(load n) ;; 4(load n) ;; 5(push 1) ;; 6(sub) ;; 7(all fat) ;; 8(mul) ;; 9(ret))) ;; 10Let step be the single-step state transition funtion for WyoM1. So(step s) is the state produed by exeuting the instrution indiated bythe program ounter in the top frame of the all stak of state s.The \loked" interpreter for WyoM1 is(defun run (s n)(if (zp n)s(run (step s)(- n 1))))An interpreter without a lok for WyoM1 is given below by run-w. (Run-w s)runs WyoM1, starting with state s, to termination, if a halted state an bereahed by repeated steps. The value of (run-w s) on states that do notterminate is not spei�ed.(defun haltedp (s)(equal s (step s)))(defpun run-w (s)(if (haltedp s)s(run-w (step s)))) 10



The interpreter without a lok for WyoM1, run-w, an be used to stateand prove, in ACL2, the following WyoM1 program orretness result.First WyoM1 funtion de�nitions are given for sq whih squares its inputand max whih returns the maximum of its two inputs.(defonst *sq-def* (defonst *max-def*'(sq (n) '(max (x y)(load n) (load x)(dup) (load y)(mul) (sub)(ret))) (ifle 3)(load x)(ret)(load y)(ret)))Let s be the following state desribed by speifying its top (and only) frameand list of funtion de�nitions.(modify nil:p 0:loals loal-vars:stak s0:program '((load x) ;; 0(all sq) ;; 1(all fat) ;; 2(load x) ;; 3(all fat) ;; 4(all sq) ;; 5(all max) ;; 6(store y) ;; 7(halt)) ;; 8:defs (list *sq-def**max-def**fat-def*)).Let x be the value of the variable 'x in (loals s). If x is a nonnegativeinteger and s is run to termination, then WyoM1 ends in the following statedesribed by indiating how the state s is modi�ed.11



(modify s:p 8:loals (bind 'y (MAX (! (SQ x))(SQ (! x)))(loals s)))Here MAX, SQ, and ! are ACL2 funtions implementing the usual maximum,squaring, and fatorial funtions. Here is the formal orretness result inACL2.(defthm prog-is-orret-with-run-w(let* ((s (modify nil:p 0:loals loal-vars:stak s0:program '((load x) ;; 0(all sq) ;; 1(all fat) ;; 2(load x) ;; 3(all fat) ;; 4(all sq) ;; 5(all max) ;; 6(store y) ;; 7(halt)) ;; 8:defs (list *sq-def**max-def**fat-def*)))(x (binding 'x (loals s))))(implies (and (integerp x)(>= x 0))(equal (run-w s)(modify s:p 8:loals (bind 'y (MAX (! (SQ x))(SQ (! x)))(loals s)))))):hints . . .)Remember that (run-w s) is not spei�ed for those states s for whihWyoM1 does not terminate. So for example, how do we know that for the12



state s initially given in the above defthm that WyoM1 atually halts andprodues the modi�ed state? Could it be that WyoM1 does not halt on sand the unspei�ed value of (run-w s) just happens to be the modi�ed stategiven in the defthm?The meta-theorem, Theorem 2, says that if ACL2 an prove prog-is-orret-with-run-w, then ACL2 an also prove there is a nonnegative inte-ger n suh that the statement of this theorem remains true when (run-w s)is replaed by (run s n). The proof of Theorem 2 is arefully followedusing haltedp for test, identity, ie., (identity x) = x for base, step forstep, run for stepn, the initial state s in the defthm for a, and the modi�edstate for b.(defthm prog-is-orret-with-run(let* ((s (modify nil:p 0:loals loal-vars:stak s0:program '((load x) ;; 0(all sq) ;; 1(all fat) ;; 2(load x) ;; 3(all fat) ;; 4(all sq) ;; 5(all max) ;; 6(store y) ;; 7(halt)) ;; 8:defs (list *sq-def**max-def**fat-def*)))(x (binding 'x (loals s)))(n (nfix (nbr-steps-to-halt s))))(implies (and (integerp x)(>= x 0))(equal (run s n)(modify s:p 8:loals (bind 'y (MAX (! (SQ x))(SQ (! x)))13



(loals s)))))):hints . . .)where nbr-steps-to-halt is the hoie funtion(defhoosenbr-steps-to-halt (n)(s)(haltedp (run s n)))Reexive Tail ReursionIf test, base, and step are already de�ned, then the defpun onstrutionshows that the equation(equal (f x)(if (test x)(base x)(f (step x))))is satis�able by some total funtion. Manolios and Moore also onsider thease when (step x) mentions f. Equations with nested reursive alls aresometimes alled reexive. Manolios and Moore show [5℄ that the problemof deiding if a reexive tail reursive equation is satis�able by some totalfuntion is undeidable. Sine the problem is undeidable, there must be aseswhen no total funtion satis�es the given reexive tail reursive equation.ACL2 an verify the following two theorems.Theorem 3 Let  be a positive integer and let test, base, and step be totalfuntions suh that� (implies (test (base x))(test x))� base and step ommute:(equal (base (step x))(step (base x)))
14



� either the reursion with respet to base(� 1) Æ step and test alwayshalts OR it never halts when x satis�es (not (test x)):[8x9n(test([base(� 1) Æ step℄n x))℄_ [8x8n((not(test x))) (not(test([base(� 1) Æ step℄n x))))℄Then there is a total funtion f that satis�es both the reexive tail reursiveequation(equal (f x)(if (test x)(base x)(f (step x))))and the simpler tail reursive equation(equal (f x)(if (test x)(base x)(f (base(� 1) (step x))))Theorem 4 Let  be a positive integer and let f, test, base, and step betotal funtions suh that� f is reexive tail reursive:(equal (f x)(if (test x)(base x)(f (step x))))� (implies (test (base x))(test x))� base and step ommute:(equal (base (step x))(step (base x))) 15



� reursion with respet to step and test always halts:8x9n(test(stepn x))Then f also satis�es the simpler tail reursive equation(equal (f x)(if (test x)(base x)(f (base(� 1) (step x))))Corollary 1 (Knuth [1, 3, 4℄) Let  be a positive integer and let a; b >0; d be real numbers.1. There is a total funtion on the reals satisfying the reexive tail reur-sive equation(equal (K x)(if (> x a)(- x b)(K (+ x d))))2. If (< (* (-  1) b) d) then there is an unique funtion on the realssatisfying the above reexive tail reursive equation for K.Proof. Let (test x) be (> x a), (base x) be (- x b), and (step x) be(+ x d). Then ([base(� 1) Æ step℄ x) is (+ x d (-(* (-  1) b)))and ([base(� 1)Æstep℄n x) is (+ x (* n (+ d (-(* (-  1) b))))).If (< (* (-  1) b) d), then the reursion with respet to base(� 1)Æstep and test always halts; otherwise the reursion never halts when xsatis�es (not (test x)). So by Theorem 3, there is a total funtionsatisfying the reexive tail reursive equation for K.If (< (* (-  1) b) d), then (> d 0), so the reursion with respetto step and test always halts. Then by Theorem 4, K must also sat-isfy that theorem's simpler reursive equation. Sine (< (* (-  1)b)d), the reursion spei�ed in simpler reursive equation always halts, soby Theorem 1, the simpler equation is satis�ed by an unique funtion.Corollary 2 There is an unique funtion on the reals satisfying the reexivetail reursive equation for MCarthy's 91 funtion,16



(equal (M91 x)(if (> x 100)(- x 10)(M91 (M91 (+ x 11)))))Proof. By the previous Corollary.Referenes[1℄ J.R. Cowles. Knuth's Generalization of MCarthy's 91 Funtion. In M.Kaufmann, P. Manolios, and J S. Moore, Editors, Computer-Aided Reson-ing: ACL2 Case Studies, pages 283{299. Kluwer Aademi Press, 2000.[2℄ M. Kaufmann and J S. Moore. Strutured theory development for a meh-anized logi, J. Automated Reasoning 26 (2001), 161{203.[3℄ D.E. Knuth. Textbook Examples of Reursion. In V. Lifshitz, Editor,Arti�ial Intelligene and Mathematial Theory of Computation: Papers inHonor of John MCarthy, pages 207{230. Aademi Press, 1991.[4℄ D.E. Knuth. Seleted Papers on the Analysis of Algorithms. CSLI Publi-ations, Distributed by Cambridge University Press, 2000. Chapter 22 isan update of [3℄.[5℄ P. Manolios and J S. Moore. Partial funtions in ACL2, J. AutomatedReasoning 31 (2003), 107{127.
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