
A Summary of Intrinsic
Partitioning Verification

David Greve, Raymond Richards, Matthew Wilding

Rockwell Collins Advanced Technology Center

Cedar Rapids, IA
{dagreve,rjricha1,mmwildin}@rockwellcollins.com

Abstract

Successful formal methods applications have four characteristics:
intrinsically important applications, concise correctness theorems,
validated models, and proof automation. We describe a recently-
completed verification of a microprocessor's intrinsic partitioning
mechanism in those terms.

What Makes for a Good Application of Formal Methods?

Formal methods is the application of mathematical reasoning to establish properties about digital
systems. Formal methods can be applied in many different ways with many different notations
and tools. They can deal with system models that describe the lowest level of implementation or
the most abstract requirements, with properties to be proved that may be comprehensive
descriptions of “correctness” or minor aspects that indicate good system development.

Despite the wide range of formal methods applications, we observe that successful formal
methods projects share four characteristics.

1. The target being analyzed is intrinsically important.
Formal methods can provide a high level of certainty about a target, but the extra
assurance must be worth the effort that formal verification usually entails. Three
applications of formal methods that we consider successful are Microsoft’s SLAM
project [Ball2004], AMD’s floating-point verification [Russinoff2000], and Rockwell
Collins’ requirements validation [Miller2004]. The SLAM project aims to reduce crashes
of Microsoft’s Windows OS by proving important device driver behaviors. AMD’s
floating-point work seeks to eliminate errors in the floating-point units on AMD's x86
microprocessors. Rockwell Collins is applying model-checking to help validate
requirements for safety-critical systems. Each of these applications of formal methods is
solving a problem that is important enough to justify an extra effort.

2. The target’s desired behavior has a concise and understandable formalization.
An important indicator of successful formal methods application is the degree to which
the description of the needed property is compelling. A proved theorem only increases
assurance about a target of evaluation if we trust in the formalization of the desired

ACL2 Workshop 2004

 2

property. The SLAM project proves many, small theorems about proper device driver
behavior that are drawn directly from coding guidelines of how device drivers are
supposed to be implemented. AMD's floating-point work uses a formalization of the
IEEE specification for floating-point operations. The Rockwell Collins requirements
analysis work uses the "shall" statements of requirements documents as theorems to
prove about the system model. In each of these projects the theorems are tied to a
meaningful, compelling property that when formalized is far simpler than the model of
the target of evaluation.

3. The formal model of the target is validated against the “real” target.
A mathematical proof is about some formal description of the target, so for a proof to be
of practical significance the model of the target must be validated against the actual
implementation. Microsoft’s approach in the SLAM project is to build a tool that
automatically derives structure from the actual code that they analyze. The AMD
floating-point work does something similar – a translator from the RTL implementation
of the floating-point unit produces ACL2 models automatically that are amenable to
analysis. The Rockwell Collins requirements work faces a particular challenge since the
requirements presented are informal, but techniques such as executing the requirements
models and proving properties that relate the model to the original informal description
are used to establish this link. In each of these cases there is a strong connection between
the target of evaluation and the formal model being reasoned about.

4. Proof development and checking is tool-supported.
The complexity of proofs about interesting applications makes machine-checking a
practical necessity. A highly automated methodology for guiding the proof
generator/checker to proofs in the domain of interest is typically required, and much of
the creative engineering effort in formal verification involves developing this proof
architecture. In Microsoft’s case, each property is cast as a formula suitable for model-
checking, which provides a largely automatic checking procedure. AMD has developed
libraries of properties of machine arithmetic and an approach for applying them
automatically using the ACL2 theorem prover. The Rockwell Collins requirements work
focuses on finite state models in order to be able to apply a model-checker to establish the
theorems. In each case there is significant automation that is enabled by a carefully
considered proof architecture

AAMP7 Intrinsic Partitioning

The AAMP7 is a microprocessor designed for use in embedded systems. It is the latest
generation of the AAMP microprocessor family, members of which have been employed in
systems with security-critical or safety-critical requirements. The
AAMP7 provides a novel architectural feature, intrinsic
partitioning, that enables the microprocessor to enforce an explicit
communication policy between applications. This mechanism
simplifies the construction of systems composed of several
applications that operate on the microprocessor concurrently.
Assuming that the AAMP7 can be trusted to enforce the
communication policy, applications that reside on the AAMP7 can
be developed and verified without regard to the behavior of
applications that reside in other partitions. Intrinsic partitioning is

ACL2 Workshop 2004

 3

particularly valuable in realms where much of the cost of developing a system lies in verification
and certification. The AAMP7’s intrinsic partitioning mechanism is an implementation of what is
called a separation kernel in the world of secure applications and what is known as a partitioning
system in the world of safety-critical applications.

We used ACL2 to show that the AAMP7 microprocessor’s intrinsic partitioning works as
expected. We modeled the implementation of the AAMP7 with respect to partitioning in great
detail in a formal language and proved that a formalization of the needed separation property
holds of our AAMP7 model. The model is very detailed and corresponds directly to the
microcode of the microprocessor.

One of our goals in this work is to meet formal methods requirements for certification standards
such as the Common Criteria [CC], which requires that a low-level model

… provide a description of how each module is expected to be implemented from a
design perspective. [CC, part 3 paragraph 354]

The use of ACL2 to meet high-assurance Common Criteria requirements is discussed in
[Richards2004]. One interpretation of the requirement for low-level design models is that the
low-level design model be sufficiently detailed and concrete so that an implementation can be
derived from them with no further design decisions. Because there are no design decisions
remaining, one can easily validate the model against the implementation. Note that this low level
of abstraction of a model can make a proof about it challenging. In the case of the AAMP7
proofs, a particular challenge in developing the proofs was that the low-level design models
memory as a linear address space with only read and write primitives. Although this enables
straightforward validation of the model against the actual microcode implementation, it also
requires the development of a proof methodology that supports reasoning about operations that
are modeled on a linear address space.

We briefly describe the formal verification of the AAMP7 intrinsic partitioning mechanism in
terms of the four aspects of formal methods.

1. The AAMP7’s intrinsic partitioning mechanism is important

The goal in building a partitioning mechanism is to limit what must be evaluated in a verification
or certification context. For example, secure systems can be developed that use partitions to
enforce separation between processes at different security levels. A small, trusted "separation
kernel" mediates all communication between partitions thereby assuring that nonauthorized
communication does not occur. Assuming that the partitioning system is implemented properly
and that the communication policy between partitions is loaded correctly, there is no need to
evaluate the applications running in different partitions to show that the communication policy is
enforced. Safety-critical applications can also exploit intrinsic partitioning: by hosting different
applications in separate partitions it is possible to architect a system so that applications need be
evaluated at only the needed level of rigor. This system architecting philosophy is described by
John Rushby in [Rushby1981, Rushby1999].

The correct implementation of the partitioning mechanism is of course vital to assure the
correctness of a larger system that depends upon it. Furthermore, some of the initial applications
of the AAMP7 are security applications that are architected to exploit intrinsic partitioning and
require stringent evaluation of all mechanisms being relied upon to separate data at different
classification levels.

ACL2 Workshop 2004

 4

2. The AAMP7's intrinsic partitioning has a concise formalization.

Space partitioning is the crucial property that we are interested in showing about the AAMP7.
Figure 1 presents a formalization of separation of state between partitions. (See [Greve2003b for
a detailed description of this conjecture, including a description of each of the functions.)

Unlike the other formal methods projects we describe above, there are no requirements
documents or IEEE specifications that capture the notion of separation we require for verifying
AAMP7 intrinsic partitioning. Rather, we present a theorem we think is appropriate and argue
that it makes for a good specification of separation. This is done in [Greve2003b], which presents
a proof about a firewall that is implemented with a separation kernel assumed to have this
property. The firewall that is implemented using a separation kernel is modeled in ACL2 and
proved correct, relying only on the assumed property about the underlying kernel. The fact that
the separation kernel correctness theorem is all that is relied upon upon to establish the
correctness of the larger system suggests that this correctness theorem captures an important
aspect the separation kernel's behavior.

The formalization described in [Greve2003b] can also be conveniently expressed in other
notations. Recently, the security policy was recast in the logic of the PVS theorem proving
system [Rushby2004].

3. The formal model of the AAMP7 is validated against the “real” AAMP7.

We constructed a low-level design model of the partitioning-relevant operation of AAMP7. That
model consists of approximately 3000 lines of ACL2 code. A crucial consideration is how to
validate this hand-written model against the actual AAMP7. The AAMP7 is a microcoded
microprocessor, and much of the functionality of the machine is encoded in its microcode.
"Trusted" microcode is microcode that operates with memory protection turned off, thereby
providing access to the datastructures maintained by the AAMP7 to support intrinsic partitioning.
All the partitioning-relevant microcode runs in this trusted mode, and the low-level design model
of the AAMP7 models all the microcode that implements this functionality.

We conducted a successful code-to-spec review with a National Security Agency evaluation team
in March, 2004. This review validated the formal model against the actual AAMP7. We
developed a documentation package that was used during this review. The documentation
provided included:

Figure 1. Separation kernel space separation theorem [Greve03b]

(let ((segs (intersect (dia seg) (segs (current st1)))))
 (implies
 (and
 (equal (selectlist segs st1) (selectlist segs st2))
 (equal (current st1) (current st2))
 (equal (select seg st1) (select seg st2)))
 (equal
 (select seg (next st1))
 (select seg (next st2)))))

ACL2 Workshop 2004

 5

• material explaining the semantics of ACL2 and AAMP7 microcode,
• listings of the AAMP7 microcode and the ACL2 low-level model,
• the source code listing of a tool that identifies trusted-mode microcode sequences,

and a listing of such sequences in the AAMP7 microcode,
• cross-references between microcode line numbers, addresses, and formal model line

numbers, and
• the ACL2-checkable proofs on compact disk.

The low-level design model was written specifically to make this code-to-spec review relatively
straightforward. An ACL2 macro allows an imperative-style description that eases comparison
with microcode. Also, very importantly, the model is written with the model of memory that the
microcode programmer uses when writing microcode. That is, memory has only two operations:
read and write. The simplicity of the memory model makes the code-to-spec review easier but
adds a great deal of complexity to the proof. Since the proof is machine-checked while the model
validation process requires evaluation, this is a good tradeoff. It provides a high level of
assurance with a reasonable level of evaluation. Nearly all the time on the project was spent
constructing the proofs, but they were evaluated very easily by the evaluators because they could
be replayed using ACL2. Most of the evaluation time was spent on the code-to-spec review.
Figure 2 presents a fragment of the low-level design model.

4. The AAMP7 proofs are fully checked using ACL2, made possible by a proof

architecture and theorem library infrastructure.

Much as large software implementations require an architecture, so too do large proof efforts.
Figure 3 shows the final theorem proved about the AAMP7. Note that this is an instance of the
separation theorem described in Figure 1, with a few differences. First, functions that describe
the communication policy ("dia") and the segments associated with a particular partition
("segs") are functions of segment name and processor state rather than just segment name. This
allows them to "pull" the configuration information out of the processor state. We prove this is

;=== ADDR: 052F

 (st. ie = nil)
 (Tx = (read32 (vce_reg st) (VCE.VM_Number)))

;=== ADDR: 0530

 (st. Partition = Tx)

;=== ADDR: 0531

 (TimeCount = (read32 (vce_reg st) (VCE.TimeCount)))

;=== ADDR: 0532

 (PSL[0]= TimeCount st)

Figure 2. A Fragment of the AAMP7 formal low-level model

ACL2 Workshop 2004

 6

appropriate by proving that these functions are invariant with respect to a step of the low-level
design model ("next"). Second, we add some assumptions about a secure initial state of the
AAMP7. These assumptions guarantee that the AAMP7's state is reasonable – that the
datastructures have a reasonable shape, that different datastructures do not overlap, etc.

The proof architecture breaks the proof into three main pieces
1) Proofs validating the correctness theorem (as described in [Greve2003b])
2) Proof that the abstract model meets the security policy
3) Proof that the low-level model corresponds with the abstract model

In addition to libraries provided in the standard ACL2 release, several libraries of ACL2 lemmas
were developed for this project. Two of the libraries are released and documented [Smith2004,
Greve2003a]. As previously indicated, an important challenge of this project was developing a
method for reasoning about read and write operations on a linear address space. An initial
version of this problem was posed as a challenge problem in [Greve2002], and a description of
the Rockwell Collins approach – called GACC for Generalized Accessor – is outlined in
[Greve2004]. It provides a systematic approach for describing datastructures and a template for
proving a few helpful facts about each operation.

Summary

We have completed a substantial ACL2 proof about AAMP7's intrinsic partitioning mechanism.
The formal methods artifacts have been successfully evaluated, and are part of a package that is
currently undergoing certification. The proofs require about 4 hours to replay using ACL2 2.8.
We believe that good applications of formal methods have four characteristics: intrinsically
important applications, concise correctness theorems, validated models, and proof automation.
The AAMP7 intrinsic partitioning project has each of these characteristics.

Figure 3. AAMP7 intrinsic partitioning separation theorem

(implies
 (and
 (secure-configuration spex)
 (spex-hyp :any :trusted :raw spex fun::st1)
 (spex-hyp :any :trusted :raw spex fun::st2))
 (implies
 (let
 ((abs::st1 (lift-raw spex fun::st1))
 (abs::st2 (lift-raw spex fun::st2)))
 (and
 (let ((segs (intersection-equal
 (dia-fs seg abs::st1)
 (segs-fs (current abs::st1) abs::st1))))
 (equal (raw-selectlist segs abs::st1)
 (raw-selectlist segs abs::st2)))
 (equal (current abs::st1)(current abs::st2))
 (equal (raw-select seg abs::st1)(raw-select seg abs::st2))))
 (equal
 (raw-select seg (lift-raw spex (fun::next spex fun::st1)))
 (raw-select seg (lift-raw spex (fun::next spex fun::st2))))))

ACL2 Workshop 2004

 7

Bibliography

[Ball2004] Thomas Ball, Byron Cook, Vladimir Levin, Sriram K. Rajamani, "SLAM and Static
Driver Verifier: Technology Transfer of Formal Methods inside Microsoft", Microsoft technical
report MSR-TR-2004-08, Jan 2004.

[CC] http://www.commoncriteriaportal.org/

[Greve2002] David Greve and Matthew Wilding, "Dynamic Datastructures in ACL2: A
Challenge", Nov 2002. http://hokiepokie.org/docs

[Greve2003a] David Greve and Matthew Wilding, "Typed ACL2 Records", Fourth International
Workshop on the ACL2 Prover and Its Applications (ACL2-2003), Boulder, CO, July 2003.

[Greve2003b] David Greve, Matthew Wilding, and W. Mark Vanfleet, "A Separation Kernel
Formal Security Policy", Fourth International Workshop on the ACL2 Prover and Its
Applications (ACL2-2003), Boulder, CO, July 2003

[Greve2004] David Greve, “Address Enumeration and Reasoning over Linear Address Spaces”,
ACL2 Workshop 2004.

[Miller2003] Miller, S. P., Tribble, A. C., and Heimdahl, M. P. E., “Proving the Shalls,” 12th
International Formal Methods Europe Symposium, Pisa, Italy, September 2003.

[Richards2004] Raymond Richards, David Greve, Matthew Wilding, W. Mark Vanfleet, “The
Common Criteria, Formal Methods, and ACL2”, ACL2 Workshop 2004.

[Rushby1981] J. Rushby, "Design and Verification of Secure Systems", Proceedings of the
Eighth Symposium on Operating Systems Principles, volume 15, December 1981.

[Rushby1999] John Rushby, "Partitioning for Safety and Security: Requirements, Mechanisms,
and Assurance", NASA contractor report CR-1999-209347, 1999.

[Rushby2004] John Rushby, "A Separation Kernel Formal Security Policy in PVS”, SRI CSL
technical note, March 2004.

[Russinoff2000] David Russinoff, “A Case Study in Formal Verification of Register-Transfer
Logic with ACL2: The Floating Point Adder of the AMD Athlon Processor”, FMCAD 2000.

[Smith04] Eric Smith, Serita Nelesen, David Greve, Matthew Wilding, and Raymond Richards,
“An ACL2 Library for Bags (Multisets)”, ACL2 Workshop 2004.

