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Verifying Transformation Rules of the HATS High-

Assurance Transformation System: An Approach  
 

 

 
Abstract 

In high-consequence systems, there is a high cost associated with failure. Thus, there 
should be strong evidence that the systems will not fail in the field. Such evidence cannot 
be obtained by traditional verification methods such as testing. Transformation-oriented 
programming (TOP) is a promising formal software development technique. In TOP, a 
source file that represents a correct formal specification is continuously refined to pro-
duce an implementation. The High-Assurance Transformation System (HATS) is an ex-
ample of TOP that takes as input a source file and a transformation language program 
(TLP) which represents a sequence of actions to be applied to the source file. HATS users 
express these actions as a sequence of transformation rules and control strategies. HATS 
has been used to develop an application for a high-consequence system, namely the San-
dia Secure Processor (SSP). The application is the SSP-classloader in which a source file 
(class file) is incrementally refined through five canonical forms until it becomes a ROM 
image that will be executed by the SSP hardware.  

In this paper, we introduce an approach to proving the correctness of the TLPs that 
produce the five canonical forms using ACL2. Our goal is to verify that a TLP that pro-
duces a canonical form preserves the semantics of a class file. To achieve this goal, a se-
mantic function that describes the behavior of the TLP must be identified. We have suc-
cessfully built a simplified model of the TLP that produces the first canonical form, de-
veloped a semantic function for this model, and proved that the model preserves the se-
mantic of the class file. 

1 Introduction 
The complexity of software solutions of elaborate, real-life problems is increasing. 

Even with extensive effort, software solutions may contain errors. Estimates place the 
number of software defects in newly-written, uncommented code at 50 per 1,000 lines. In 
spite of thoroughly testing the code, this number remains around ten [RH04].  In high-
consequence systems, there is a high cost associated with failure. In addition, if the cost 
of failure is measured in human life, then the systems are called safety-critical systems. In 
order to certify a high-consequence system, a failure rate of one failure in 109 operational 
hours must be provided [BS93] [WR03]. Such a system is expected to fail no more than 
once in 114,155 years [WR03]. The strong evidence that the system will not fail in the 
field cannot be obtained by traditional verification methods such as testing. 

Transformation-oriented programming (TOP) [WR03] is a promising formal soft-
ware development paradigm. In TOP, an input source file that contains a correct formal 
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specification of a software system is refined by a user-defined transformation sequence in 
order to produce an implementation. The correctness of a TOP implementation can be 
argued since the implementation is the result of refining the source file incrementally us-
ing a well-defined transformation sequence. However, such an argument is not enough to 
certify a high-consequence application. Strong evidence should be provided that the 
transformation sequence is correctness-preserving. Such evidence can be provided by us-
ing automatic reasoning systems like ACL2 [KM00a] [KM00b]. 

The High-Assurance Transformation System (HATS) [WR04A] [WR04B] [WR04C] 
[WR03] [W99] is an example of a TOP system. HATS provides a Transformation Lan-
guage Program (TLP) that facilitates the development of transformation rules and strate-
gies, which control the application of these rules. The main two inputs to HATS are: a 
source file that represents a correct formal specification and a TLP. The TLP consists of a 
sequence of transformation rules that embodies the functionality of a certain application 
and control strategies that control the application of the sequence to the source file. Then, 
HATS engine will refine the source file using the TLP to produce an implementation.  

HATS was used to implement part of the Sandia Secure Processor (SSP) 
[WR03][WR04B], an application for high-consequence systems. The application pro-
gram is the SSP-classloader that takes a source file (class file), C0, as input and produces 
a ROM image, CROM, as output. The CROM then can be executed by the SSP hardware. 
The classloader can be decomposed into a sequence of five canonical forms in which a 
class file is transformed from C0 to CROM. This decomposition facilitates the verification 
of the correctness of the SSP-classloader using ACL2. 

In this paper, we introduce an approach to proving the correctness of a HATS im-
plementation of the SSP-classloader. We develop models and techniques using ACL2 to 
prove the correctness of each of the HATS TLPs that represents each one of the canonical 
forms. We have successfully built a simplified model of the TLP that represents the first 
canonical form, developed a semantic function for this form, and proved that the model 
preserves the semantics of the source file. Ultimately, we will show that the TLP is cor-
rectness preserving. To our knowledge, no such models and techniques exist. 

The organization of this paper is as follows. Section 2 introduces the High-Assurance 
Transformation System (HATS). It describes the architecture of HATS, and the syntax 
and semantics of the transformation rules and control strategies that HATS support. It 
also presents the Program Transformation Language (PTL) for defining transformation 
rules: first- and second-order transformation rules, control strategies, and combinators. 
This section ends with an example that shows the concept of transformation rules and 
control strategies. Section 3 discusses the motivating high-consequence system, namely 
the SSP, its relation to the Java Virtual Machine [LY99] (JVM), and its two main com-
ponents: the SSP-classloader and the SSP-runtime. Section 4 investigates the simplified 
ACL2 specifications of the TLP that represents the first canonical form of the SSP-
classloader and presents the verification of that part. Section 5 concludes this paper and 
discusses future directions.   
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HATS is a transformation system that accepts two 

inputs, a source file in a specification language and a 
TLP. HATS produces a target program in an implemen-
tation language. Figure 2-1 illustrates this idea. The 
TLP specifies transformation rules and control strate-
gies, which affect how the transformation rules are ap-
plied to the source file. The programs in HATS are 
written in a context-free grammar and are stored inter-
nally as syntax derivation trees (SDTs).            

2.1 Architecture 
HATS consists of five main components that are 

shown in Figure 2-2. The first component is a target 
parser that is able to identify domain elements in the 
source file. The second is a program parser that can 
read TLPs. The third is the HATS rewriting engine, 
which applies the TLP to the source file. The fourth is a pretty printer that formats the 
results in human-readable form. Finally, the GUI contains a debugger that facilitates the 
comprehension of the transformation rules and how they are being applied to a particular 
part of a source file. 

Figure 2-2: HATS data flow diagram 
 
The parser accepts an input string, which represents the source file, and reads it to 

generate an SDT, which is described by a domain grammar. The resulting SDT will be 
the destination of the transformation rules. In this work, “SDT”, “parse tree”, and “terms” 
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are synonymous. The TLP is also converted to an SDT. Then, the rewriter attempts to 
apply the transformation rules and strategies in the TLP to the source SDT in an attempt 
to transform it into a new SDT that represents the target program. Finally, the pretty 
printer is used to display the results. 

2.2 Transformation Language Program  
HATS provides a special purpose language for defining TLPs. A TLP contains 

primitives such as types, operations, identifiers, constants, and comments. It also contains 
language constructs. The important primitives are the ones used to define transformation 
rules and control strategies. A TLP may also contain combinators, which define how a 
sequence of transformation rules will be manipulated. A simplified syntax will be used in 
this work. 

The structure of a TLP is shown in Figure 2-3. It consists of four main sections. The 
first section is the global declaration section. The second is the transform function sec-
tion, which defines the transformation rules that will be used to convert a source file into 
target program. The third section is the local declaration section, which usually contains 
the declaration of the target program and the result as an SDT type. The last section is the 
main body of the program, which specifies the control strategy that will be used to apply 
transformation rules to the target program SDT and prints out the result. 

 Figure 2-3: The recommended structure for a transformation program  

2.2.1 Transformation Rules 
A transformation rule consists of a left-hand side, that represents a term to transform, 

a right-hand side, that represents the new term to replace the old one, and a rewrite opera-
tor, denoted by the symbol →, used to connect the left-hand side with the right-hand side. 
Thus, a rewrite rule has the following general form. 

 
left-hand side →  right-hand side 

 
The left-hand side may contain variables. As an example,  

 

(a) Transformation pro-
gram structure 

global declaration section 
 
transform function section 
 
 
local declaration section 
 
main body of program 

 
 

(b) Transformation program fragment 

______________________ 
 
transform rule_name = [rule1 @rule2 ...     
                                               @rulen]   
 
SDT: input_program, result 
 
input_program := input(“target-program”); 
result := fix(post_order, input_program, rule_name); 
output_program_string(result). 
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natp (n) → IntLessThanOrEqual (0, n), 
 

is a rewrite rule where n is a variable, 0 is a constant that represents the natural number 
zero, and natp and IntLessThanOrEqual are predicates. The natp predicate returns true if 
its argument is a natural number. The rewrite rule states that natp can be implemented 
using the IntLessThanOrEqual predicate with its first argument set to the constant 0. 
The transformation proceeds as follows: for a given term t, HATS determines whether it 
is an instance of the left-hand side of a transformation rule. If it is, then t will be matched 
with the left-hand side of that rule producing a substitution list such that t and the left-
hand side of the rule are identical.  This process is called matching.  The substitution list 
is used to instantiate the right-hand side of the rule, which replaces t. For instance, sup-
pose that t is the term natp (10). This term will be matched with the left-hand side of the 
rule, namely natp (n). As a result, n will be bound to the constant 10, and the substitution 
list is {n/10}. The right-hand side of the rule is instantiated using this substitution, and the 
result is IntLessThanOrEqual (0, 10). This term will replace natp (10). Thus, the result of 
applying natp (n) → IntLessThanOrEqual (0, n) to natp (10) is IntLessThanOrEqual (0, 
10). 

 
 
 
 
Another variation of transformation rules is the conditional transformation rule. In 

this type, the transformation rules are annotated with conditions. The general form of 
such rules is as follows. 

 
left-hand side →  right-hand side if C, 

 
where C denotes a Boolean formula. In conditional transformation rule, a term t is 
matched with the left-hand side of a transformation rule and a substitution list is con-
structed as a result of the matching process. This substitution list is applied to the condi-
tion C, and C is evaluated. If C is true, then the right-hand side of the transformation rule 
is instantiated and replaces the term t. 

 
HATS has two types of transformation rules: first-order transformation rules (FOTR) 

and second-order transformation rules (SOTR). An FOTR matches terms and produces 
new terms. For example, the following rule is FOTR. 

 
TR-1 =  i  j 

 
An SOTR matches terms and produces FOTRs. The following rule is an SOTR that 

generates an FOTR for each term matching the left-hand side of the rule, namely (i j). 
Note that the operator   is right-associative.  

 
TR-2 = (i j)   i   j 

natp (n) → IntLessThanOrEqual (0, n)  natp (10) 
IntLessThanOrEqual (0, 10)
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2.2.2 Control Strategies 
There are two important properties in any transformational system, termination and 

confluence.  A transformational system is terminating if it has no infinite transformation 
sequences, i.e., the application of the transformation rules, T, to a term, t, will eventually 
stop and produce a new term called normal form.  Confluence means that in spite of the 
order of applying the transformation rules T to the term t, the resultant normal form is 
unique [GH94][T03]. Ideally, transformation rules can be applied in any order to a source 
file, and the transformation will terminate and produce a unique normal form. However, 
this is usually not the case since some transformation rules may give rise to infinite 
branches and non-confluent systems may produce different normal froms. Thus, it is nec-
essary to have strategies that control the application of the transformation rules to the 
source files.   

In HATS, the transformation rules are applied according to four control strategies: 
fix, once, transient, or hide. In fix, the rules are applied in an exhaustive fashion. An SDT 
that represent a source file is traversed, and the transformation rules are applied to every 
node. This process is repeated until no more application of the transformation rules is 
possible. The strategy once traverses the SDT only once. The transient strategy traverses 
the SDT and is applied at most once, i.e., after the first application of a transformation 
rule using the transient strategy to a node in the SDT, the rule is reduced to a skip combi-
nator that prevents it from being applied any more. The hide strategy prevents the HATS 
engine from knowing whether the application of a certain rule is successful or not.   

Each call of fix, once, transient, or hide takes three arguments: a traversal mode, a 
source file, and a transformation sequence. The traversal mode determines the way that 
the control strategy will walk through the SDT of the source file. The purpose of the tra-
versal is to apply the transformation rules, which are represented by the transformation 
sequence, to the SDT in a certain way. Two traversal modes are supported in HATS: pre-
order and post-order. In the pre-order traversal mode, parents of nodes are visited first, 
and then the siblings are visited. In the post-order traversal mode, the siblings are visited 
first, and then the parent is visited. 

2.2.3 Combinators 
HATS supports three combinators: sequential (;), left-biased (<+), and right-biased 

(+>). If a sequence of transformation rules is composed using the sequential combinator, 
then the sequence will be executed-to-completion on a given term, t, from left to right. 
For example, if one executes the sequence (r1;r2;r3), on the term t, the rule r1 will be 
matched with the term t and the term t’ is produced. The second rule r2 will be tried on t’, 
and so on. The left-biased combinator, on the other hand, will proceed from left to right, 
but it will stop as soon as one of the rules in the sequence is successfully applied. The 
right-biased combinator is similar to the left biased combinator except that it starts exe-
cuting from right to left and stops when a rule in the sequence is successfully applied.  
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2.3 Example 
Consider the following association list representing a table. 
 

table =  ((1 “Hello”) 
 (2 “World”) 
 (3 2) 
 (4 3)) 
 

Each entry of table consists of two components: the first is a natural number, and the 
second is either a string or a natural number that is smaller than the first component. In 
this case, the second component is a pointer to some previous entry in table. The goal in 
this example is to resolve the pointers in the second column of table, i.e., to replace each 
index with the string to which it points. To achieve our goal, we need the following se-
quence of FOTRs. 

 
TR-1 = (x 1)  (x “Hello”) 
TR-2 = (x 2)  (x “World”) 
TR-3 = (x 3)  (x 2) 
TR-4 = (x 4)  (x 3) 
 

We will refer to the above sequence as rule-list. In this example, the rules in 
the sequence rule-list are composed using the sequential combinator. The application 
of the sequence rule-list to the table once will yield the following result. 
 

once(rule-list, table) =  ((1 “Hello”) 
  (2 “World”) 
  (3 “World”) 
  (4 2)) 
 

The application of the once strategy only one time  is not enough to resolve all the 
pointers in the table since applying the rule-list to the table once will leave, in the 
above case, one unresolved pointer. Thus, we need to use the fix strategy as follows. 

 
fix(rule-list, table) =  ((1 “Hello”) 

 (2 “World”) 
 (3 “World”) 
 (4 “World”)) 

3 Motivating Example: The Sandia Secure Processor (SSP) 
SSP is a project at Sandia National Laboratories and is intended to provide a general-

purpose computational infrastructure suitable for use in high-consequence embedded sys-
tems. It is a simplified Java processor that consists of two components: the SSP-
classloader, which is implemented in software, and SSP-runtime, which is implemented 
in hardware.  
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JVM 
Intermediate 
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(ROM image) 
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(static) 
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≡
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Figure 3-1: The relation between the SSP 
and the JVM. The functionality of the JVM 
is carried on by the SSP-classloader and the 
SSP-runtime 

 

3.1 SSP vs. JVM 
The JVM specifications provide for 

applications to be executed before all class 
files are completely loaded.  This execution 
eagerness is preferable in applications that 
have class files spread over the Internet. 
However, in embedded systems this poses 
great risk. Therefore, the SSP is a closed 
system in the sense that all the classes that 
will be used in the execution must be 
available before the execution starts, and the 
class loading activities of the JVM can be 
performed statically. Figure 3-1 shows the 
relation between the JVM and the SSP. 

The SSP does not implement the 
following features of Java: garbage 
collection, multiple threads, interfaces, 
exception handling, floating point operations, 
dynamic arrays, initialization of static fields, 
and Java libraries. 

3.2 The SSP-classloader 
The functionality of the SSP-classloader 

can be decomposed into a sequence of 
canonical forms in which a class file, C0, is 
transformed to a ROM image, CROM. Each of 
the transformation rules that embody a 
canonical form manipulates the source file 
and produces an intermediate form that can 
be used by the next form. In order to apply 
this idea, a term language supporting suitable intermediate class file forms has to be de-
signed; such a term language is shown in Figure 3-2. 

In this section, we introduce the five canonical forms that embody the functionality 
of the SSP-classloader with concentration on the first form. The interested reader can 
consult [WR04A] [WR04B] [WR04C] for more details.  

 
3.2.1 Canonical Form 1: Index Resolution 

In a typical class file, various type of information is stored as indexes into the con-
stant pool. Indexes into the constant pool may exist in several forms: references to field, 
method, this-class, and super-class. These indexes denote directly or indirectly informa-
tion that is ultimately utf8 strings.  
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constant_pool ::= cp_info_list 
cp_info_list ::= cp_info cp_info_list | () 
cp_info ::= [access] base_entry 
access ::= [offset] index 
  
base_entry ::= constant_name_and_type_info 
 | constant_fieldref_info 
 | constant_methodref_info 
 | constant_class_info 
 | constant_integer_info 
 | constant_utf8_info 
  
constant_name_and_type_info ::= name description 
constant_fieldref_info ::= class name_and_type 
constant_methodref_info ::= class name_and_type 
constant_class_info ::= name 
constant_integer_info ::= bytes 
constant_utf8_info ::= utf8 
  
class ::= name 
name ::= data 
name_and_type ::= data 
description ::= data 
data ::= index | utf8 | name description 

Figure 3-2: A context-free grammar that describes a term language appropriate to be used to 
represent the intermediate class file forms 

 
To arrive at this form, all indirection in a constant pool of a Java class file, C0, are re-

solved. The result is a new intermediate file, C1.  Consider the constant pool fragment 
shown in Figure 3-3 to which we refer as C0. After resolving the indexes in this constant 
pool the result will be as shown in Figure 3-4 to which we refer as C1. 

 

Index Entry Type Contents 
1 CONSTANT_Fieldref_info 2 3 
2 CONSTANT _Class_info 4 
3 CONSTANT _Name_And_type_info 5 6 
4 CONSTANT _Utf8_info B 
5 CONSTANT _Utf8_info Y 
6 CONSTANT _Utf8_info I 

 Figure 3-3: A constant pool description of the integer field B.x 
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Index Entry Type Contents 
1 CONSTANT_Fieldref_info B Y I 
2 CONSTANT _Class_info B 
3 CONSTANT _Name_And_type_info Y I 
4 CONSTANT _Utf8_info B 
5 CONSTANT _Utf8_info Y 
6 CONSTANT _Utf8_info I 

 Figure 3-4: The constant pool shown in Figure 3-3 after index resolution 

3.2.2 Canonical Form 2: Static Field Address Calculation 
The goal of this form is to assign each static field within the Java application a 

unique absolute address. The number of the static fields remains constant during runtime 
since they are associated with a class rather than objects. 

3.2.3 Canonical Form 3: Instance Field Offset Calculation 
The goal of this form is to assign a unique offset to each instance field within a class 

file. Instance fields are different from static fields. The former is associated with an ob-
ject rather than a class. Thus, each object has its own copy of its own instance fields plus 
all the instance fields inherited from its super class. 

3.2.4 Canonical Form 4: Method Table Construction 
The goal in this form is to construct a method table for every class. The entries of 

each table contains the data necessary to execute the bytecodes corresponds to the im-
plementation of a method. Each class must store the inherited or redefined method in the 
same relative position in their method table. 

3.2.5 Canonical Form 5: Inter-class Absolute Address and Offset Address Distri-
bution 

The goal in this form is to distribute the absolute addresses and the offset addresses 
between the class files within a Java application. This is necessary because a single class 
file may contain symbolic references to fields and methods defined in other class files. 
Therefore, if a class file X has symbolic references to a class file Y, these symbolic refer-
ences appear in the constant pool of X and must be resolved using the information origi-
nating from the class Y. In other words, absolute addresses and offset addresses must be 
transmitted from the class they are defined in to all classes they referenced from. 

4 Verification 
This section describes our approach to modeling and verifying the correctness of the 

TLPs of HATS that represent the five canonical forms of the SSP-classloader. A model 
of a simplified version of TLP1, which represents the first canonical form, will be taken 
as an example. Figure 4-1 shows an abstract classfile before it is submitted to TLP1. Fig-
ure 4-2 shows the abstract class file in Figure 4-1 after TLP1 has been applied to it.  

In our work, however, we are modeling and verifying a simplified problem, which is 
the table resolution problem in presented in section 2.3. Our work can be summarized as 
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follows: First, the recursive function fix-strategy, which models the behavior of the 
simplified version of TLP1, is created. Second, a proof is provided to show that the func-
tion has a measure that decreases in each recursive call. Third, a proof is presented that 
the application of the fix-strategy to an input class file will preserve the semantics of 
the class file, i.e., the transformation rules, when applied to the class file in a certain or-
der, will preserve correctness. To achieve this goal, a semantic function that describes the 
behavior of TLP1 must be identified.  

 
This class 1 
Super Class 19 
CP (1,A)(2,1.3)(3,x1)(4,1.5)(5,x2)(6,1.8)(7,1.9)(8,a1)(9,a2)(10,11.3) 

(11,B)(12,11.13)(13,foo)(14,x3)(15,bar)(16,1.14)(17,1.13)(18,1.15)(19,Obj) 
Static fields 2@- 4@- 16@- 
Instance fields 6:- 7:- 
MT  
Methods 17() 18() 
Figure 4-1: An abstract class file before submission to TLP1. 

 
This class 1 
Super Class 19 
CP (1,A)(2,A.x1)(3,x1)(4,A.x2)(5,x2)(6,A.a1)(7,A.a2)(8,a1)(9,a2)(10,B.x1) 

(11,B)(12,B.foo)(13,foo)(14,x3)(15,bar)(16,A.x3)(17,A.foo)(18,A.bar)(19,Obj) 
Static fields 2@- 4@- 16@- 
Instance fields 6:- 7:- 
MT  
Methods 17() 18() 
Figure 4-2: An abstract class file after being processed by TLP1. 

 
In our model, however, parsing will be done manually and the SDTs, which corre-

spond to TLP1 and the class file, are inserted as direct inputs. Therefore, the HATS parser 
is assumed to be correct since the verification of the correctness of the HATS parser is 
beyond the scope of our work.  

4.1 ACL2 Specifications 
The functionality of TLP1 that represents the first canonical form of the SSP-

classloader can be abstracted to the table resolution example introduced in Section 2.3. 
Our model is built around that example; however, in this discussion we will refer to the 
table as classfile. Figure 4-1 illustrates the dependency among the main functions 
involved in our model. 
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fix-strategy1 (rule-list, classfile) 

once-strategy (rule-list, tail, classsfile) 

fix-strategy (classfile)

generate-rules (classfile) 

apply-rule-list-to-node (rule-list, i , classfile) 

apply-rule-to-node (rule, i, classfile) 

Put-in-place (new-node, classfile) 

Figure 4-1: The dependency among the main functions in the model of the first form of the SSP-
classloader 

 
Our ACL2 model of TLP1 consists of 22 functions and predicates. The description of 

the main functions is presented in Table 4-1. For the complete model, please see the at-
tached script. 

4.2 Verification 
The verification effort consists of two parts: proving that the function fix-strategy 

terminates and that it preserves the semantics of the input classfile. Since the function 
fix-strategy is non-recursive, our concentration will be on the function fix-
strategy1. To prove that the function fix-strategy1 terminates, a measure that de-
creases each time there is a match between a rule in the rule-list and the classfile 
should be identified. To prove that the function fix-strategy1 preserves the semantics 
of the classfile, a semantic function, S, should be identified. This function determines 
the equivalence of the input classfile and the output that results from applying fix-
strategy1 to classfile, i.e., the transformation rule and the respective control strategy 
preserve the semantics of the input classfile. Therefore, for the function fix-strategy, 
which models TLP1, there is a semantic function, S1. Our main conjecture for the ACL2 
model of the first form is as follows. 

∀(C0) S1 (C0) = S1 (fix-strategy (C0)), 
 

where S1 is the semantic function for the model of TLP1, C0 is the input class file, 
and fix-strategy is the model of the TLP1 that represents the simplified first form. 
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Table 4-1: The description of the main function in our model 
Function Name Description 

Input: classfile fix-strategy 

Output: an updated copy of classfile in which all the 
pointers have been resolved. 
Input: classfile generate-rules 

Output: a list of FOTR rules, rule-list, which will be 
used to resolve the pointer of the classfile. (this func-
tion simulates how HATS generate an FOTRs on the fly 
from a given classfile.) 
Input: classfile, rule-list fix-strategy1 

Output: an updated copy of classfile in which all the 
pointers have been resolved. 
Inputs: rule-list, tail, and classfile Once-strategy 

Output: an updated copy of classfile in which one 
level of the pointers has been resolved. 
Inputs: rule-list, i, and classfile apply-rule-list-to-node 

Output: an updated copy of classfile in which one 
level of the pointer in the ith entry has been resolved. (The 
updated copy is the result of applying all the possible 
transformation rules in rule-list.) 
Inputs: rule, i, and classfile apply-rule-to-node 

Output: an updated classfile in which one level of the 
pointer in the ith entry has been resolved. (The updated 
copy is the result of applying the current transformation 
rules in rule-list.) 
Inputs: new-node and classfile put-in-place 

Output: a new classfile in which a modified new node, 
namely new-node, is inserted back in its correct location. 

 

4.2.1 Proof of Termination 
Admitting the recursive function fix-strategy1 requires identifying a measure that 

decreases after each recursive call. The measure is the sum of the pointers in the second 
column of the input classfile such that if the pointer is a string, it is given the weight 
zero; however, if the pointer is a natural number, it is given a weight that equal to its 
value plus one. This measure is represented by the function sum-addr-to-resolve that 
has the following definition. 

 
(defun sum-addr-to-resolve (classfile) 
  (if (endp classfile) 
      0 
    (+ (sum-classfile-entry (car classfile)) 
       (sum-addr-to-resolve (cdr classfile))))) 
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The function sum-addr-to-resolve recursively accumulates the weight of the sec-
ond column of each entry in the classfile using the function sum-classfile-entry, 
which is defined as follows. 

 
(defun sum-classfile-entry (entry) 
  (if (natp (cadr entry)) 
      (1+ (cadr entry))     
    0))   
 
Before proving that the function sum-addr-to-resolve decreases, we must show 

that it always returns an integer that is greater than or equal to zero. The lemma is stated 
as follows. 

 
(defthm sum-addr-to-resolve-type 
  (and (integerp (sum-addr-to-resolve classfile)) 
       (<= 0 (sum-addr-to-resolve classfile))) 
  :rule-classes :type-prescription) 
 
To prove that the function sum-addr-to-resolve decreases, three predicates should 

be defined: matches, which returns t if there is a match between a rule and a certain 
node in the classfile; matchp, which returns true if there is a match between any rule 
in the rule-list and a node; and all-matchp, which returns true if there is a match be-
tween any rule in the rule-list and any node in the classfile.  

    
The main conjecture in the proof of termination is as follows. 
 
(defthm sum-addr-once-strategy-strictly-< 
  (implies  

  (and (well-formed-classfilep classfile) 
         (all-matchp rule-list tail classfile)) 
    (< (sum-addr-to-resolve  

(once-strategy rule-list tail classfile)) 
       (sum-addr-to-resolve classfile))) 
  :rule-classes :linear) 
 

In this conjecture, the predicate well-formed-classfilep returns t if every node 
in classfile satisfies the following constraints: the first component is a natural number 
and the second component is either a string or a natural number that is strictly less than 
the first component. This constraint is necessary to avoid loops in the classfile and 
make the proof of termination of fix-strategy1 easier in our simplified version (we 
intend to remove this restriction in our future work see section 5.) The conjecture states 
that: given a well-formed classfile with at least one node that matches any rule in 
rules-list, then the sum of the second column of the new classfile is less that the 
sum of the original classfile. Proving this conjecture requires proving three other simi-
lar lemmas about the functions apply-rule-list-to-node, apply-rule-to-node, and 
put-in-place. The three lemmas are as follows. 
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 (defthm sum-addr-apply-rule-list-to-node-strictly-< 
  (implies  

  (and (well-formed-classfilep classfile) 
         (matchp rule-list n classfile)) 
    (< (sum-addr-to-resolve  

(apply-rule-list-to-node rule-list n classfile)) 
       (sum-addr-to-resolve classfile))) 
  :rule-classes :linear) 
 
(defthm sum-addr-apply-rule-to-node-strictly-< 
  (implies  
     (and (matches rule n classfile) 
          (well-formed-classfilep classfile)) 
     (< (sum-addr-to-resolve (apply-rule-to-node rule n classfile)) 
        (sum-addr-to-resolve classfile))) 
  :rule-classes :linear) 
 
(defthm sum-addr-put-in-place-strictly-< 
  (implies  
     (and (well-formed-classfilep classfile) 
      (natp (cadr (assoc n classfile))) 
          (or (stringp x) 
              (< x (cadr (assoc n classfile))))) 
    (< (sum-addr-to-resolve  
             (put-in-place (list n x) classfile)) 
         (sum-addr-to-resolve classfile)))) 

4.2.2 Semantic Function 
To verify that the transformation rules are correctness-preserving, a semantic func-

tion is identified. In this case, the function is get-constant. This function will be used to 
prove that the transformation rules preserve the correctness of an input classfile. The 
function get-constant takes two inputs: a natural number n and a classfile. The 
chain of pointers is followed until a string is reached, and the string is returned. If no 
string is found, nil is returned. The definition of the function get-constant in ACL2 is 
as follows. 

 
(defun get-constant (n classfile) 
  (let ((temp (assoc n classfile))) 
    (cond ((null temp) nil) 
          ((stringp (cadr temp)) (cadr temp)) 
          ((or (not (natp n)) 
               (not (natp (cadr temp))) 
               (<= n (cadr temp))) 
           nil) 
          (t (get-constant (cadr temp) classfile))))) 

4.2.3 Main conjecture 
The next step is to use get-constant to prove that the semantic of classfile is 

preserved after applying the function fix-strategy. Our main conjecture is as follows.  
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(defthm get-constant-n-fix-strategy1 
  (implies (well-formed-classfilep classfile) 
           (equal (get-constant n  

           (fix-strategy1 rule-list classfile)) 
                  (get-constant n classfile)))) 
 
The conjecture states that given a well-formed classfile, the result of following a 

pointer n in the result of applying the function fix-strategy1 to a classfile will be 
the same as following the pointer n in the original classfile. To prove the main conjec-
ture, we need to prove four similar conjectures about the functions: once-strategy, ap-
ply-rule-list-to-node, apply-rule-to-node, and put-in-place. These four lem-
mas are presented below and the interested reader can refer to the attached script for more 
details. For the record, to prove the termination conjecture and the semantic equivalence 
conjecture, 39 lemmas are needed. 

 
(defthm member-position-gc-put-in-place-general 
  (implies   
     (and (well-formed-classfilep classfile) 
          (well-formed-classfile-entryp (list position any)) 
          (equal (get-constant position classfile) 
                 (if (stringp any) 
                    any 
                  (get-constant any classfile)))) 
     (equal (get-constant n  
                   (put-in-place (list position any) classfile)) 
            (get-constant n classfile)))) 
 
(defthm get-constant-apply-rule-to-node 
  (implies (well-formed-classfilep classfile) 
           (equal (get-constant n  
                       (apply-rule-to-node rule position classfile)) 
                  (get-constant n classfile)))) 
 
(defthm get-constant-n-apply-rule-list-to-node   
  (implies  
     (well-formed-classfilep classfile) 
     (equal (get-constant n (apply-rule-list-to-node rule-list  
        position classfile)) 
            (get-constant n classfile)))) 
 
(defthm get-constant-n-once-strategy  
  (implies (well-formed-classfilep classfile) 
           (equal (get-constant n  
                     (once-strategy rule-list tail classfile)) 
                  (get-constant n classfile)))) 

5 Conclusion and Future Work 
The proof of correctness of the simplified version of the first form shows the appli-

cability of our approach to verify that the TLPs preserve the correctness of the input 
structure. Our formal approach to model and verify a simplified version of TLP1 of the 
SSP-classloader using ACL2 establishes a framework which can be adapted in verifying 
other HATS implementations. However, it should be clear that the semantic functions, 
which are a crucial part of the verification effort, might vary depending on the applica-
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tion. This suggests that significant effort must be devoted to understanding the source 
file, the TLP, and the output. When the semantic function is defined, then key lemmas 
can be identified. We believe that there is a general pattern among HATS applications. 
Thus, verifying one application can help in verifying others. Furthermore, we believe that 
this framework is applicable to other TOP examples.  

Our next step is to remove the restriction on the input table so that the second com-
ponent, if it is a natural number, should not be less than the first component. A problem 
that results from removing this restriction is that we have to avoid loops, i.e., a pointer x 
leads to a pointer y and the pointer y leads to the pointer x again. Next is to allow the 
second component of each entry of the table to be a list of two components in order to 
more closely match actual Java classfiles.  
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