
2nd October, 2015

A Quick Tour of the x86isa Books

ACL2 Rump Session Talk

Shilpi Goel
shigoel@cs.utexas.edu

Released the x86isa books on 21st May, 2015 (books/projects/x86isa)
License: BSD 3-Clause

Today: ~120 files, ~100K lines (including comments, whitespace, & documentation)

Short-Term Goal

E.g.: Formal Analysis of an Optimized Data-Copy Program

Short-Term Goal

Specification:
Copy data x from linear memory location l0 to
disjoint linear memory location l1.

E.g.: Formal Analysis of an Optimized Data-Copy Program

Short-Term Goal

Specification:
Copy data x from linear memory location l0 to
disjoint linear memory location l1.

xl0

Linear
Memory

E.g.: Formal Analysis of an Optimized Data-Copy Program

Programmer
-level mode

Short-Term Goal

Specification:
Copy data x from linear memory location l0 to
disjoint linear memory location l1.

xl0

Linear
Memory

xl1

E.g.: Formal Analysis of an Optimized Data-Copy Program

Programmer
-level mode

Short-Term Goal

Specification:
Copy data x from linear memory location l0 to
disjoint linear memory location l1.

xl0

Linear
Memory

xl1

Verification Objective:
After a successful copy, l0 and l1 contain x.

E.g.: Formal Analysis of an Optimized Data-Copy Program

Programmer
-level mode

Short-Term Goal

Specification:
Copy data x from linear memory location l0 to
disjoint linear memory location l1.

xl0

Linear
Memory

xl1

Verification Objective:
After a successful copy, l0 and l1 contain x.

Implementation:
Include the copy-on-write technique: l0 and l1
can be mapped to the same physical memory
location p.

‣ System calls
‣ Page mapping
‣ Privileges
‣ Context Switches

xp

Physical
Memory

E.g.: Formal Analysis of an Optimized Data-Copy Program

Programmer
-level mode

Short-Term Goal

Specification:
Copy data x from linear memory location l0 to
disjoint linear memory location l1.

xl0

Linear
Memory

xl1

Verification Objective:
After a successful copy, l0 and l1 contain x.

Implementation:
Include the copy-on-write technique: l0 and l1
can be mapped to the same physical memory
location p.

‣ System calls
‣ Page mapping
‣ Privileges
‣ Context Switches

xp

Physical
Memory

E.g.: Formal Analysis of an Optimized Data-Copy Program

Programmer
-level mode

System-
level mode

Long-Term Goals

• Get more miles: Boot/run a serious OS (like FreeBSD) on the x86isa model
➡ Support more x86-64 features

• Verify more serious programs
➡ E.g., FreeBSD/Linux code for context switching
➡ Use tools like codewalker to make life easier

What do the x86isa books contain?

➡ A formal, executable x86 ISA model (64-bit mode)
Modeling (x86isa/machine)

- x86 state
- Specification of x86 instructions (311 opcodes)
- Instruction fetch, decode, and execute function (step function)
- Run function

- Single core

What do the x86isa books contain?

➡ A formal, executable x86 ISA model (64-bit mode)
Modeling (x86isa/machine)

- x86 state
- Specification of x86 instructions (311 opcodes)
- Instruction fetch, decode, and execute function (step function)
- Run function

- Single core

Vol. 3A 2-3

SYSTEM ARCHITECTURE OVERVIEW

2.1.1 Global and Local Descriptor Tables
When operating in protected mode, all memory accesses pass through either the global descriptor table (GDT) or
an optional local descriptor table (LDT) as shown in Figure 2-1. These tables contain entries called segment
descriptors. Segment descriptors provide the base address of segments well as access rights, type, and usage
information.

Each segment descriptor has an associated segment selector. A segment selector provides the software that uses
it with an index into the GDT or LDT (the offset of its associated segment descriptor), a global/local flag (deter-
mines whether the selector points to the GDT or the LDT), and access rights information.

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

Local Descriptor
Table (LDT)

CR1
CR2
CR3
CR4

CR0 Global Descriptor
Table (GDT)

Interrupt Descriptor
Table (IDT)

IDTR

GDTR

Interrupt Gate

Trap Gate

LDT Desc.

TSS Desc.

Code
Stack

Code
Stack

Code
Stack

Current TSS
Code

Stack

Interr. Handler

Interrupt Handler

Exception Handler

Protected Procedure

TR

Call-Gate
Segment Selector

Linear Address

PML4

PML4.

Linear Address Space

Linear Addr.

0

Seg. Desc.Segment Sel.

Code, Data or Stack
Segment (Base =0)

Interrupt
Vector

Seg. Desc.

Seg. Desc.

NULL

Call Gate

Task-State
Segment (TSS)

Seg. Desc.

NULL

NULL

Segment Selector

Linear Address

Task Register

CR3*

Page

LDTR

This page mapping example is for 4-KByte pages
and 40-bit physical address size.

Register

*Physical Address

Physical Address

CR8
Control Register

RFLAGS

OffsetTableDirectory

Page Table

Entry

Physical
Addr.Page Tbl

Entry

Page Dir.Pg. Dir. Ptr.

PML4 Dir. Pointer

Pg. Dir.
Entry

Interrupt Gate
IST

XCR0 (XFEM)

Modeling: Verification Effort vs. Utility

Simulation speed measured on an Intel Xeon E31280 CPU @ 3.50GHz, 8 cores, 32GB RAM

Programmer-Level Mode System-Level Mode

Verification of application programs Verification of system programs

Linear memory address space
(264 bytes)

Physical memory address space
 (252 bytes)

Assumptions about correctness of OS
operations

No assumptions about OS operations

~3.3 million instructions/second ~912,000 instructions/second
(with 1G pages)

Modeling: Verification Effort vs. Utility

What do the x86isa books contain?

➡ A formal, executable x86 ISA model (64-bit mode)
Modeling (x86isa/machine)

What do the x86isa books contain?

➡ Executable file readers and loaders (ELF/Mach-O)
➡ A GDB-like mode for dynamic instrumentation of machine code
➡ Examples of program execution and debugging

Simulation (x86isa/tools/execution)

➡ A formal, executable x86 ISA model (64-bit mode)
Modeling (x86isa/machine)

What do the x86isa books contain?

➡ Executable file readers and loaders (ELF/Mach-O)
➡ A GDB-like mode for dynamic instrumentation of machine code
➡ Examples of program execution and debugging

Simulation (x86isa/tools/execution)

➡ Helper libraries to reason about x86 machine code
➡ Proofs of various properties of some machine-code programs

Reasoning (x86isa/proofs)

➡ A formal, executable x86 ISA model (64-bit mode)
Modeling (x86isa/machine)

What do the x86isa books contain?

➡ Documentation

➡ Executable file readers and loaders (ELF/Mach-O)
➡ A GDB-like mode for dynamic instrumentation of machine code
➡ Examples of program execution and debugging

Simulation (x86isa/tools/execution)

➡ Helper libraries to reason about x86 machine code
➡ Proofs of various properties of some machine-code programs

Reasoning (x86isa/proofs)

➡ A formal, executable x86 ISA model (64-bit mode)
Modeling (x86isa/machine)

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____X86ISA

• I made a decision to make my work a part of the ACL2 Community books

• Even though it’s not really ready for primetime…

• Why? Apart from the obvious technical benefits (keep up with changes in
ACL2, books I depend on), this has been incredibly motivating.

A Personal Note

Thank You!

• I made a decision to make my work a part of the ACL2 Community books

• Even though it’s not really ready for primetime…

• Why? Apart from the obvious technical benefits (keep up with changes in
ACL2, books I depend on), this has been incredibly motivating.

A Personal Note

Model Validation

Task 1 | x86 ISA Model | Model Validation

How can we know that our model faithfully represents the x86 ISA?

Validate the model to increase trust in the applicability of formal analysis.

Programmer-level Mode: Model Validation

Task B: Validate the execution mode against the processor +
system call service provided by the OS

Task A: Validate the logical mode against the execution mode

Programmer-level Mode: Execution Mode

Programmer-level Mode: Execution and Reasoning

