Stateman: Using Metafunctions to Manage
Large Terms Representing Machine States

J Strother Moore
Department of Computer Science
University of Texas at Austin

Terms Representing Machine States

(1T 6 ; set pc to 6
('S NIL ; set status flag to NIL
('R 0 8 4280 ; set mem[0..7] to 4280

(IR 16 8 (LOGAND z)

('R (+ 40 (x 8 7)) 8 111
('R 4280 8 999
ST))))))

Terms Representing Machine States

; addr n wval
('I 6
('S NIL
('R 0 8 4280
('R 16 8 (LOGAND z y)
(IR (+ 40 (x 8 7)) 8 111
(IR 4280 8 999

ST))))))

Terms Representing Machine States

(I
(11 6
(18 NIL
('R 0 8 4280
(IR 16 8 (LOGAND z v)
(IR (+ 40 (* 8 7)) 8 111
(IR 4280 8 999
ST)))))))

o

Terms Representing Machine States

(S
(1T 6
(18 NIL
(IR 0 8 4280
('R 16 8 (LOGAND z v)
('R (+ 40 (x 814)) 8 111
('R 4280 8 999
ST)))))))

NIL

Terms Representing Machine States

(R 16 8
(1T 6
(18 NIL
(IR 0 8 4280
('R 16 8 (LOGAND z v)
('R (+ 40 (x 814)) 8 111
('R 4280 8 999
ST)))))))

(MOD (LOGAND z y) 26%)

Terms Representing Machine States

(R 4280 8
(1T 6
(18 NIL
(IR 0 8 4280
('R 16 8 (LOGAND z v)
('R (+ 40 (x 814)) 8 111
('R 4280 8 999
ST)))))))
999

provided (+ 40 (*x 8 1) 8) < 4280
V (+ 4280 8) < (+ 40 (x 8 7))

Rewrite Rules

e (I ('S v st)) = (I st)

o ((NATP a) A (NATP b) A (+ b k) < a)
— Ran ()IRbkwovst)) = (Ran st)

o ((NATP a) A (NATP b) A (+ a n) < b)
— Ran ('Rbkwovst)) = (Ran st)

Such rules suffice to manipulate state expressions.

Rewrite Rules

o (I ('S v st)) = (I st)

o ((NATP a) A (NATP b) A (+ b k) < q)
— (Ran ('Rbkwvst)) = (Ran st)

o ((NATP a) A (NATP b) A (+ a n) < b)
— (Ran (\Rbkwvst)) = (R an st)

Such rules suffice to manipulate state expressions — except

when there are deep nests of !R-expressions and a, b, n, and k
are large expressions.

Terms Representing Machine States

(I 6

(1S NIL
('R 0 3 4280
('R 16 8 (LOGAND z v)
('R (+ 40 (x 8 7)) 3 111
('R 4280 3 999
ST))))))
Size (in function applications): 9

Biggest Address or Value Expression: 2

10

Motivation for This Project

We have recently analyzed a piece of code (15,361
instructions of a formal ISA) involving states with:

Size (in function applications): 2,158,895
Biggest Address or Value Expression: 147,233

Backchaining to decide questions like
(+ 40 (x 8 7) 8) <4280
V (+ 4280 8) < (+ 40 (x 8 1))

for every pair of addresses in such state expressions is
prohibitive.

11

Highlights

Manage read-over-write and write-over-write expressions
exclusively with metafunctions

Implement a syntactic interval inference mechanism
Implement syntactic means of deciding some inequalities

Implement syntactic means of simplifying some MOD
expressions

Use syntactic means to decide overlap questions

Insist that all byte counts be quoted constants

12

Do not put nested !R-expressions into address order
Eliminate perfectly shadowed writes

Use hons rather than cons to create state expressions
HIDE the state expressions produced by the metafunctions

HIDE some values extracted by reads from hidden states to
avoid re-simplifying them

Prove guards and well-formedness guarantees of the
metafunctions

13

Ainni — Our Interval Analyzer

Given

(+ 288 (x 8 (LOGAND 31 (ASH (R 4520 8 st) -3))))
our analyzer reports an interval of [288, 536].

But if (R 4520 8 st) < 24 is known by context, then the
interval shrinks to [288, 304].

The analyzer can compute the interval [0, 252 — 1] for the
largest value term encountered (147,233 function applications)
in 0.01 seconds.

14

Examples of Ainni

(switch to *shell* buffer)

15

Finding Assignments

(R 4280 8
(11
(18
('R 0
(IR 16
(IR (+ 40 (* 8 7))
(IR 4280
ST)))))))

O 0 00 ©o

6
NIL

4280

(LOGAND z)
111

999

16

Finding Assignments

(R 4280 8
(18
('R 0
('R 16
(IR (+ 40 (* 8 7))
(IR 4280
ST))))))

O 0 00 0o

NIL

4280

(LOGAND =z)
111

999

17

Finding Assignments

(R 4280 8 ; [4280,4287] vs [0,7]

(IR 0 8 4280
('R 16 8 (LOGAND z v)
('R (+ 40 (x 814)) 8 111
('R 4280 8 999

ST))))))

18

Finding Assignments

(R 4280 8 ; [4280,4287] vs [16,23]

('R 16 8 (LOGAND z v)
('R (+ 40 (x 814)) 8 111
('R 4280 8 999

ST))))))

19

Finding Assignments

(R 4280 8 ; [4280,4287] vs [40,167] w/ ¢ <16
('R (+ 40 (x 81¢)) 8 111
('R 4280 8 999
ST))))))

20

Finding Assignments

(R 4280 8 ; same!
(IR 4280

ST))))))

999

999

21

Preliminary Performance Results

A: guard verification
B: well-formedness

C: honsing

D: memoization

— 088 secs
A 055 secs
A-+B 618 secs

A+B-+C 494 secs
A+B+C+D 375 secs

22

Future Work

e provide a metafunction to prove state equality

e engineer ACL2 to cope better with large definitions

23

More Generally

This project illustrates a very common industrial application of

ACL2: as a programming language suitable for writing verified
programs.

By mixing verified metafunctions with the rest of ACL2, one
can build a powerful domain-specific prover.

24

