
INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

A Versatile, Sound Tool for Simplifying
Definitions

Alessandro Coglio (Kestrel Institute)
Matt Kaufmann (UT Austin)

Eric W. Smith (Kestrel Institute)

ACL2 Workshop 2017

1/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

OUTLINE

INTRODUCTION

BASIC EXAMPLES

EXAMPLE: CONVERTING BETWEEN UNBOUNDED AND

BOUNDED INTEGER OPERATIONS

IMPLEMENTATION OVERVIEW

CONCLUSION

2/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

OUTLINE

INTRODUCTION

BASIC EXAMPLES

EXAMPLE: CONVERTING BETWEEN UNBOUNDED AND

BOUNDED INTEGER OPERATIONS

IMPLEMENTATION OVERVIEW

CONCLUSION

3/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

INTRODUCTION

Our “Five Ws and one H” (cf. Wikipedia “Five Ws”):

I WHAT: A tool, simplify-defun, that transforms
definitions into simpler versions

I WHO/WHERE: Used in APT project at Kestrel Institute
I WHY: Carry out rewriting transformations and simplify

results from other APT program transformations
I HOW: Employ the ACL2 simplifier (and various other

utilities, including make-event)
I WHEN: Older version is in supporting materials; soon (we

hope) to move the “real” version to the community books

4/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

INTRODUCTION (2)

Improvements vs. related (but simpler) tool presented in 2003
ACL2 Workshop include:

I More robust and flexible
I Many more options, e.g., for simplifying specified subterms
I Used hundreds of times so far

I Simplify-defun is an event form (via make-event)
that can thus go into a book

I Uses community book misc/expander.lisp, which has
been improved in support of this project

5/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

OUTLINE

INTRODUCTION

BASIC EXAMPLES

EXAMPLE: CONVERTING BETWEEN UNBOUNDED AND

BOUNDED INTEGER OPERATIONS

IMPLEMENTATION OVERVIEW

CONCLUSION

6/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

BASIC EXAMPLES

Let’s start by seeing a few examples.

I Later in the talk we will touch briefly on how
simplify-defun works, but not here.

[DEMO]

I We will follow file demo.lsp in the supporting materials
directory
books/workshops/2017/coglio-kaufmann-smith/support/

with corresponding log file demo-log.txt.

7/27

https://github.com/acl2/acl2/tree/master/books/workshops/2017/coglio-kaufmann-smith/support/

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

BASIC EXAMPLES

Some features not demoed in depth:

I simplifying measure and guard
I mutual-recursion (with syntax for associating an option

with a specific clique member)
I transforming recursive to non-recursive or vice versa
I flexibility for matching subterms
I more aspects of directed-untranslate
I ...

The paper describes two applications of simplify-defun in
the use of APT. Let’s turn now to one of those.

8/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

OUTLINE

INTRODUCTION

BASIC EXAMPLES

EXAMPLE: CONVERTING BETWEEN UNBOUNDED AND

BOUNDED INTEGER OPERATIONS

IMPLEMENTATION OVERVIEW

CONCLUSION

9/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

BOUNDED VS. UNBOUNDED INTEGERS

I Popular programming languages like C and Java typically
use bounded integer types and operations

I Requirements specifications typically use unbounded
integer types and operations

I To verify code against specifications, or to synthesize
verified code from specifications, often it must be proved
that bounded and unbounded integers are “equivalent”
under given conditions

I The following slides consider a code verification scenario,
but a similar approach should apply to a code synthesis
scenario

10/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

AN ACL2 MODEL OF BOUNDED INTEGERS

Consider an ACL2 model of 32-bit two’s complement integers
(e.g., bit vectors), isomorphic to the ACL2 integers in
[−231, 231), with associated modular operations:

'

&

$

%

'

&

$

%

int32p (signed-byte-p 32 ...)

-

�

int

int32

add32 sub32 mul32

gte32 ...

+ - *
>= ...

11/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

REPRESENTATION OF BOUNDED INTEGER

EXPRESSIONS IN ACL2

Java code like

if (d >= 0) { d += 2 * (b - a); }
else { d += 2 * b; }

can be represented via ACL2 terms like

(if (gte32 d (int32 0))
(add32 d (mul32 (int32 2) (sub32 b a)))

(add32 d (mul32 (int32 2) b)))

(see paper).

12/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

RULES TO CONVERT BOUNDED TO UNBOUNDED

INTEGER OPERATIONS

(defthmd add32-to-+
(equal (add32 x y)

(int32 (+ (int x) (int y)))))
(defthmd sub32-to--
(equal (sub32 x y)

(int32 (- (int x) (int y)))))
(defthmd mul32-to--
(equal (mul32 x y)

(int32 (* (int x) (int y)))))
(defthmd gte32-to-<=
(equal (gte32 x y)

(>= (int x) (int y))))

13/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

RESULT OF APPLYING THE OPERATION CONVERSION

RULES

(if (>= (int d)
(int (int32 0)))

(int32 (+ (int d)
(int
(int32 (* (int (int32 2)

(int
(int32
(- (int b)

(int a))))))))))
(int32 (+ (int d)

(int
(int32
(* (int (int32 2))

(int b)))))))

14/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

RULE TO ELIMINATE THE CONVERSIONS

(defthm int-of-int32
(implies (signed-byte-p 32 x)

(equal (int (int32 x)) x)))

While the operation conversion rules are unconditional, this
rule is conditional: relieving its hypothesis amounts to proving
that the bounded integer operations do not wrap arouund.

15/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

RESULT OF APPLYING THE CONVERSION

ELIMINATION RULE

(if (>= (int d) 0)
(int32 (+ (int d)

(* 2 (- (int b) (int a)))))
(int32 (+ (int d) (* 2 (int b)))))

The hypotheses are relieved automatically in this case, given
the context where the expression appears (see paper).

The remaining int conversions at the leaves and int32
conversions at the roots can be eliminated via APT’s
isomorphic data transformations, which changes the
representation of a, b, d, and result from int32p to
(signed-byte-p 32 ...).

16/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

OUTLINE

INTRODUCTION

BASIC EXAMPLES

EXAMPLE: CONVERTING BETWEEN UNBOUNDED AND

BOUNDED INTEGER OPERATIONS

IMPLEMENTATION OVERVIEW

CONCLUSION

17/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

IMPLEMENTATION OVERVIEW
How does simplify-defun expand into an event? Recall our
first example.

ACL2 !>(defun f1 (x)
(if (zp x) 0 (+ 1 1 (f1 (+ -1 x)))))

.....
F1

ACL2 !>(simplify-defun f1)
(DEFUN F1{1} (X)

(DECLARE (XARGS ...))
(IF (ZP X) 0 (+ 2 (F1{1} (+ -1 X)))))

ACL2 !>:pe f1-becomes-f1{1}
3:x(SIMPLIFY-DEFUN F1)

\
> (DEFTHM F1-BECOMES-F1{1}

(EQUAL (F1 X) (F1{1} X))
:HINTS ...)

18/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

AT A HIGH LEVEL

ACL2 !>:trans1 (simplify-defun f1)
(WITH-OUTPUT
:GAG-MODE NIL :OFF :ALL :ON ERROR
(PROGN
(MAKE-EVENT ...)
(VALUE-TRIPLE :INVISIBLE)))

ACL2 !>

The make-event call (above) generates an encapsulate
form. What is that form?

19/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

ACL2 !>(simplify-defun f1 :show-only t)
(ENCAPSULATE NIL
(SET-INHIBIT-WARNINGS "theory")
(SET-IGNORE-OK T)
(SET-IRRELEVANT-FORMALS-OK T)
(LOCAL (INSTALL-NOT-NORMALIZED F1))
(LOCAL (SET-DEFAULT-HINTS NIL))
(LOCAL (SET-OVERRIDE-HINTS NIL))
(DEFUN

F1{1} (X)
(DECLARE (XARGS :NORMALIZE NIL

:GUARD T
:MEASURE (ACL2-COUNT X)
:VERIFY-GUARDS NIL
:HINTS (("Goal" :USE (:TERMINATION-THEOREM F1))

’(:IN-THEORY (DISABLE* F1 (:E F1) (:T F1))))))
(IF (ZP X) 0 (+ 2 (F1{1} (+ -1 X)))))

(LOCAL
(PROGN
(MAKE-EVENT (LET ((THY ...))

(LIST ’DEFCONST
’*F1-RUNES*
(LIST ’QUOTE THY))))

(DEFTHM F1-BEFORE-VS-AFTER-0
(EQUAL (IF (ZP X) 0 (+ 1 1 (F1 (+ -1 X))))

(IF (ZP X) 0 (+ 2 (F1 (+ -1 X)))))
...)

(COPY-DEF F1{1} ...)
(DEFTHM F1-BECOMES-F1{1}-LEMMA

(EQUAL (F1{1} X) (F1 X))
:HINTS ...)))

(DEFTHM F1-BECOMES-F1{1}
(EQUAL (F1 X) (F1{1} X))
:HINTS ...))

ACL2 !>

20/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

EXPANSION

What did we just see?

(encapsulate nil
[prelude]
[local events] ; these do the work
[new defun form]
[‘becomes’ theorem])

Let’s look at local events....

21/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

LOCAL EVENTS (1)

(DEFTHM F1-BEFORE-VS-AFTER-0
(EQUAL (IF (ZP X) 0 (+ 1 1 (F1 (+ -1 X))))

(IF (ZP X) 0 (+ 2 (F1 (+ -1 X)))))
:INSTRUCTIONS ((:IN-THEORY *F1-RUNES*) ...)
:RULE-CLASSES NIL)

(COPY-DEF F1{1}
:HYPS-FN NIL
:HYPS-PRESERVED-THM-NAMES NIL
:EQUIV EQUAL)

22/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

LOCAL EVENTS (2)

(DEFTHM F1-BECOMES-F1{1}-LEMMA
(EQUAL (F1{1} X) (F1 X))
:HINTS
(("Goal"
:BY ; from the copy-def call
(:FUNCTIONAL-INSTANCE F1{1}-IS-F1{1}-COPY

(F1{1}-COPY F1))
:IN-THEORY
(UNION-THEORIES (CONGRUENCE-THEORY WORLD)

(THEORY ’MINIMAL-THEORY)))
’(:USE
(F1-BEFORE-VS-AFTER-0 F1$NOT-NORMALIZED))))

Let’s look at the key events for functional instantiation and
then the corresponding proof obligation.

23/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

(DEFTHM F1{1}-IS-F1{1}-COPY
(EQUAL (F1{1} X) (F1{1}-COPY X))
:HINTS ...
:RULE-CLASSES NIL)

(DEFTHM F1{1}-COPY-DEF
(EQUAL (F1{1}-COPY X)

(IF (ZP X)
’0
(BINARY-+ ’2 (F1{1}-COPY (BINARY-+ ’-1 X)))))

:HINTS ... :RULE-CLASSES ((:DEFINITION ...)))
(DEFTHM F1-BECOMES-F1{1}-LEMMA

(EQUAL (F1{1} X) (F1 X))
:HINTS (("Goal" :BY (:FUNCTIONAL-INSTANCE

F1{1}-IS-F1{1}-COPY
(F1{1}-COPY F1)))

...))

; proof obligation from functional instantiation:
(EQUAL (F1 X)

(IF (ZP X) 0 (+ 2 (F1 (+ -1 X)))))
24/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

Note links below to new features in ACL2 or books.
Need How need is met
prove termination appeal to previous function’s unnormal-

ized body (install-not-normalized) and
:termination-theorem

verify guards appeal to previous function’s
:guard-theorem

support assumptions require a proof that assumptions are
preserved on recursive calls

preserve structure use directed-untranslate
use context simplify and flatten assumptions, IF tests
suppress output turn off warnings; return and print only

the new definition
ease debugging :show-only t, :verbose t
control patterns, hints, . . .
support redundancy use an ACL2 table
automate reasoning functional instantiation, theories, . . .

25/27

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____INSTALL-NOT-NORMALIZED
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TERMINATION-THEOREM
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____GUARD-THEOREM
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DIRECTED-UNTRANSLATE

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

OUTLINE

INTRODUCTION

BASIC EXAMPLES

EXAMPLE: CONVERTING BETWEEN UNBOUNDED AND

BOUNDED INTEGER OPERATIONS

IMPLEMENTATION OVERVIEW

CONCLUSION

26/27

INTRODUCTION BASIC EXAMPLES INTEGER EXAMPLE IMPLEMENTATION CONCLUSION

CONCLUSION

I Simplify-defun is sound, in that it generates events for
ACL2 to prove

I We are using it heavily as part of the APT tool suite for
transforming programs and program specifications.

I Simplify-defun is coming soon to the community
books under kestrel/.

I Its :XDOC documentation explains the many options,
which have been developed as needed.

I More details are (of course) in the paper.

Thanks!

27/27

	Introduction
	Basic Examples
	Example: Converting between Unbounded and Bounded Integer Operations
	Implementation Overview
	Conclusion

