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Continuously Differentiable curve

(encapsulate
((c (x) t)
(c—derivative (x) t))
;; Our witness continuous function is the identit
(local (defun c(x) x))
(local
(defun c—derivative (x) (declare (ignore x)) 1

)
; (i—close (/ (= (¢ x) (cy)) (= xy))

;(c—derivative x))

; (i—close (c—derivative x) (c—derivative y))

)
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Norm of the derivative of a continuous function is
continuous

» Continuously differentiable function means it's derivative is
continuous.

» real and imaginary parts of a continuous function are

are continuous)

dx d
continuous. (d—);, d—);

» Square of a continuous function is continuous.
— — ] are continuous
dt ) '\ dt

» Sum of 2 continuous functions is continuous.

% 2+ Q i is continuous
dt dt



Square root of a continuous function is Continuous

(implies (and (realp yl)
(realp y2)
(i—limited yl1)
(i—limited y2)
(>= y1 0)
(>= y2 0)

(not (i—close yl y2)))
(not (= (standard—part (square yl))
(standard—part (square y2)))))

(implies (and (realp yl)
(realp y2)
(i—limited yl)
(i—limited y2)
(>= y1 0)
(>= y2 0)

(not (i—close yl y2)))
(not (i—close (square yl) (square y2))))



Square root of a continuous function is Continuous

(defthmd root—close—f
(implies
(and (standardp x1)
(realp x1)
(realp x2)
(>= x1 0)
(>= x2 0)
(i—close x1 x2))
(i—close (acl2—sqrt x1) (acl2—sqrt x2)))
;hints omitted

)

. % 2+ Q i is continuous
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Riemann sum of the lengths of the chords

> Let h(t) = \/<Z);)2 + <Z,);>2

» Riemann sum for the partition (to, t1, to, ..., ty) is
h(t1).At + h(t2).At + .....h(t,). At

» We can prove this is limited using
limited — riemann — rcfn — small — partition
in continuous — function book

» Thus as n — oo, At is infinitely small and riemann sum is
equal to tZ” h(t)dt
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Circumference of a circle with radius r

Circle with radius r (standard and real number) can defined as
f(t)=rxe" =rx(cost+ixsint),0<t<2r
let, g(t) = rx(—sint+ixcost)

. d o d o
Since, Jzcost = —sint and Zsint = cost,

fi(t) ~ g(t)

Since sin t and cos t are continuous, g(t) is continuous.
Thus by using above proof length of f(t) is equal to

2T
| e
0



Applying second Fundamental Theorem of Calculus

g(t)=rx*(—sint+i*cost)

2w 2w
lg(t)| = r; o lg(t)| dt = o rdt
Let, h(t)=rxt, H(t)=|g(t)|

.. Using second fundamental theorem of calculus

2
/0 | g(t) | dt = h(2w) — h(0) = r«2x%7
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