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Theory
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∑n

i=1 | Pi − Pi−1 |



Deriving length of a continuously differentiable curve
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Continuously Differentiable curve

( e n c a p s u l a t e
( ( c ( x ) t )

( c−d e r i v a t i v e ( x ) t ) )
; ; Our w i t n e s s con t i nuou s f u n c t i o n i s the i d e n t i t y f u n c t i o n .
( l o c a l ( defun c ( x ) x ) )
( l o c a l

( defun c−d e r i v a t i v e ( x ) ( d e c l a r e ( i g n o r e x ) ) 1
) )

; ( i− c l o s e (/ (− ( c x ) ( c y ) ) (− x y ) )
; ( c−d e r i v a t i v e x ) )

; ( i− c l o s e ( c−d e r i v a t i v e x ) ( c−d e r i v a t i v e y ) )
)



Norm of the derivative of a continuous function is
continuous

I Continuously differentiable function means it’s derivative is
continuous.

I real and imaginary parts of a continuous function are

continuous. (
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Square root of a continuous function is Continuous

( i m p l i e s (and ( rea lp y1 )
( rea lp y2 )
( i− l i m i t e d y1 )
( i− l i m i t e d y2 )
(>= y1 0)
(>= y2 0)
( not ( i− c l o s e y1 y2 ) ) )

( not (= ( s t a n d a r d−p a r t ( s q u a r e y1 ) )
( s t a n d a r d−p a r t ( s q u a r e y2 ) ) ) ) )

( i m p l i e s (and ( rea lp y1 )
( rea lp y2 )
( i− l i m i t e d y1 )
( i− l i m i t e d y2 )
(>= y1 0)
(>= y2 0)
( not ( i− c l o s e y1 y2 ) ) )

( not ( i− c l o s e ( s q u a r e y1 ) ( s q u a r e y2 ) ) ) )



Square root of a continuous function is Continuous

( defthmd r o o t−c l o s e− f
( i m p l i e s

(and ( s t a n d a r d p x1 )
( rea lp x1 )
( rea lp x2 )
(>= x1 0)
(>= x2 0)
( i− c l o s e x1 x2 ) )

( i− c l o s e ( a c l 2− s q r t x1 ) ( a c l 2− s q r t x2 ) ) )
; h i n t s omi t ted
)

∴

√(
dx

dt

)2

+

(
dy

dt

)2

is continuous



Riemann sum of the lengths of the chords

I Let h(t) =

√(
dx

dt

)2

+

(
dy

dt

)2

I Riemann sum for the partition (t0, t1, t2, ..., tn) is
h(t1).∆t + h(t2).∆t + .....h(tn).∆t

I We can prove this is limited using
limited − riemann − rcfn − small − partition
in continuous − function book

I Thus as n→∞,∆t is infinitely small and riemann sum is
equal to

∫ tn
t0

h(t)dt
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Circumference of a circle with radius r

Circle with radius r (standard and real number) can defined as

f (t) = r ∗ e it = r ∗ (cos t + i ∗ sin t), 0 ≤ t ≤ 2π

let, g(t) = r ∗ (− sin t + i ∗ cos t)

Since, d
dt cos t = − sin t and d

dt sin t = cos t,

f ′(t) ≈ g(t)

Since sin t and cos t are continuous, g(t) is continuous.
Thus by using above proof length of f (t) is equal to∫ 2π

0
|g(t)| dt
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Applying second Fundamental Theorem of Calculus

g(t) = r ∗ (− sin t + i ∗ cos t)

|g(t)| = r ; ∴
∫ 2π
0 |g(t)| dt =

∫ 2π
0 r dt

Let, h(t) = r ∗ t, h′(t) =| g(t) |

∴ Using second fundamental theorem of calculus∫ 2π

0
| g(t) | dt = h(2π)− h(0) = r ∗ 2 ∗ π
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