
Generalization Correctness

David Greve
Rockwell Collins
March 15, 2017

This research was developed with funding from the Defense Advanced
Research Projects Agency (DARPA) under Contract FA8750-16-C-0218.
Distribution Statement A: Approved for Public Release; Distribution Unlimited.
The views, opinions, and/or findings expressed are those of the author(s)
and should not be interpreted as representing the official views or policies
of the Department of Defense or the U.S. Government.

Problem Statement

• Given
– System Model
– Constraint
– Solution provided by Constraint

Solver

• Generate a Generalization
– Convert a single solution into a set of

solutions
– Express Result Concisely

• Usually Generalization != Constraint
• Result is Inexact

2

constraint solution

Generalization

Generalization Illustration

3

• Computed via Symbolic Simulation
– System Model + Constraint
– Original Solution
– Simulation is Approximate (Lossy)

• Representational constraints

• Is the Generalization Correct?
– Formalize Correctness
– Articulate Generalization Rules
– Prove Rules Satisfy Correctness

Constraint = T

X = T

Y = F

Z = T

Model

Generalization

B

E
A

Generalization Correctness Statements

• Top Level Correctness Statement
– Generalization Contains Original Solution
– Generalization is a Subset of Original

Constraint

• Invariants
– Can be enforced incrementally

• During Symbolic Simulation
– Reduce to Correctness when applied to

top level constraint

4

• Correctness Invariants
– 1. Evaluating Solution on Generalization must be the same as

Evaluating Solution on original expression
– 2. An input whose evaluation differs from that of the solution on the

original expression must also differ on the Generalization

Generalization Rules

• Generalizing Boolean Expressions
– AND, OR, NOT, ID

• One Choice:

– Drop Terms or Not?

• Visualization

– State Space
• Original Solution is one Point

– Organized as Truth Table w/to A,B

• Consider rules for Generalizing AND
– OR follows from De Morgan’s

5

Rule #1: (AND F F)

6

• Correctness Invariants
– 1. Evaluating Solution on Generalization must be the same as Evaluating Solution on

original expression
– 2. An input whose evaluation differs from that of the solution on the original expression

must also differ on the Generalization

• Generalization Rule #1
– If both expressions evaluate to False, we can either keep both or keep just one

Rule #2: (AND T T)

7

• Correctness Invariants
– 1. Evaluating Solution on Generalization must be the same as Evaluating Solution on

original expression
– 2. An input whose evaluation differs from that of the solution on the original expression

must also differ on the Generalization

• Generalization Rule #2
– If both expressions evaluate to True, then we must keep both

Rule #3: (AND T F)

8

• Correctness Invariants
– 1. Evaluating Solution on Generalization must be the same as Evaluating Solution on

original expression
– 2. An input whose evaluation differs from that of the solution on the original expression

must also differ on the Generalization

• Generalization Rule #3
– If the expressions evaluate to different values, we can either keep both or keep just the

False expression

ACL2 Model

• Defined an expression evaluator
– Expression and variable binding
– AND, OR, NOT, IDs

• Used encapsulation to characterize 3 Generalization rules for AND

– Choice is .. pragmatic

• Defined a depth-first generalizer
– Returns a “generalized” expression
– NOT,ID performs no simplification
– Encapsulated function generalizes AND expressions
– De Morgan’s rule to simplify OR

• Formalized Correctness Invariants

• Proved that generalizer satisfied invariants

9

Expression Evaluator

10

(defun eval-expr (expr env)
 (case-match expr
 (('and x y)
 (let ((x (eval-expr x env))
 (y (eval-expr y env)))
 (and x y)))
 (('or x y)
 (let ((x (eval-expr x env))
 (y (eval-expr y env)))
 (or x y)))
 (('not x)
 (let ((x (eval-expr x env)))
 (not x)))
 (('id n)
 (nth n env))
 (& expr)))

Generalizer Formalization

11

(defun gen-expr (expr sln)
 (case-match expr
 (('and x y)
 (let ((genx (gen-expr x sln))
 (geny (gen-expr y sln)))
 (gen-and genx geny sln)))
 (('or x y)
 (let ((genx (gen-expr x sln))
 (geny (gen-expr y sln)))
 (gen-or genx geny sln)))
 (('not x)
 (let ((genx (gen-expr x sln)))
 (not-expr genx)))
 (& expr)))

Applies ‘and’
Rules

Invariant Proofs

12

(defthm invariant-1
 (iff (eval-expr (gen-expr expr sln) sln)
 (eval-expr expr sln))
 :hints (("Goal" :induct (gen-expr expr sln))))

original solution original
expression

• Correctness Invariants
– 1. Evaluating Solution on Generalization must be the same as

Evaluating Solution on original expression
– 2. An input whose evaluation differs from that of the solution on the

original expression must also differ on the Generalization

Invariant Proofs

13

(defthm invariant-2
 (implies
 (iff (eval-expr expr any) (not (eval-expr expr sln)))
 (iff (eval-expr (gen-expr expr sln) any)
 (eval-expr expr any)))
 :hints (("Goal" :induct (gen-expr expr sln)
 :do-not-induct t)))

PROOF FAILED!

arbitrary vector

• Correctness Invariants
– 1. Evaluating Solution on Generalization must be the same as

Evaluating Solution on original expression
– 2. An input whose evaluation differs from that of the solution on the

original expression must also differ on the Generalization

original solution

Rule #3: (AND T F)

14

• Generalization Performed Depth-First
– Solution space may get smaller (per correctness statement)
– Predicate boundaries move closer to original solution

• Generalization Rule #3
– If the expressions evaluate to different values, we may keep only

the False expression

Conclusion

• We assumed that “Doing Nothing” was conservative

– If you never change the expression, it trivially satisfies correctness

• We were wrong !

• It is easy to make these kinds of mistakes
– ACL2 can help during algorithmic development

• Accomplishments

– Formalized a notion of correctness for Generalization
– Formalized rules for Generalization
– Proved Generalization procedure

• Corrected an error in our original Generalization rules

15

	Generalization Correctness
	Problem Statement
	Generalization Illustration
	Generalization Correctness Statements
	Generalization Rules
	Rule #1: (AND F F)
	Rule #2: (AND T T)
	Rule #3: (AND T F)
	ACL2 Model
	Expression Evaluator
	Generalizer Formalization
	Invariant Proofs
	Invariant Proofs
	Rule #3: (AND T F)
	Conclusion

