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Objectives

• Reason about machine code generated from high-level languages 
• Eliminate need to trust compiler frontends by reasoning about 

compiler intermediate forms 
• Exercise the ACL2 theorem prover, and the integrated 

Codewalker facility, to prove properties of low-level programs 
•Highly automated proof system — minimal user interaction 
•High-speed, executable specifications — can be used for 

validation testing 
• “Pluggable” Instruction Set definitions 

• Learn about WebAssembly and how to prove correctness for 
WebAssembly programs 
• Motivated by previous work on reasoning about LLVM code 

using Codewalker (ACL2-15 paper)



WebAssembly

• WebAssembly is a new intermediate form for the Internet, under 
development by Apple, Google, Microsoft, and Mozilla 
• To be supported on WebKit, Chrome, Edge, and Firefox  

• Web site: http://webassembly.org; WebAssembly on github 

• PLDI 2017 paper, also available on the WebAssembly github: 

http://webassembly.org


WebAssembly (cont’d.)

• Stack-based intermediate, similar to JVM and Microsoft IL 
• Emphasis on safe execution, portability, speed of JIT’ed code 
• Operational semantics in OCaml 
• WebAssembly output by LLVM compiler 
• Runnable via Javascript API from browsers 
• Output formats include binary, as well as s-expression-based 

representation 
• Some Technical Differences relative to the JVM: 

• Instruction set not Java-centric 
• Not as object- and thread-oriented as the JVM 

• Branches are taken relative to the current lexical block 
• Eliminates instructions such as goto that make bytecode 

verification more challenging 
• Some differences in the stack manipulation instructions



Example: Iterative Factorial Test Case, from 
WebAssembly github

   (func (export "fac-iter") (param i64) (result i64) 
    (local i64 i64) 
    (set_local 1 (get_local 0)) 
    (set_local 2 (i64.const 1)) 
    (block 
      (loop 
        (if 
          (i64.eq (get_local 1) (i64.const 0)) 
          (br 2)    ;; branch out two levels to last instruction 
          (block 
            (set_local 2 (i64.mul (get_local 1) (get_local 2))) 
            (set_local 1 (i64.sub (get_local 1) (i64.const 1))))) 
        (br 0)))    ;; branch to beginning of current block 
    (get_local 2))



Codewalker

• A new facility as of ACL2 7.0 (January 2015), due to J Moore 
• Performs “decompilation into logic” of a machine-code program to 

a series of “semantic functions” that summarize the program’s 
effect on machine state 

• Works with an instruction set description written in the usual ACL2 
“machine interpreter” style, as earlier described 

• Produces proofs that the generated semantic functions are correct 
• Inspired by Magnus Myreen’s Ph.D. thesis (2008) 

• Myreen’s decompiler utilizes the HOL4 theorem prover 

• For more details, see books/projects/codewalker in the ACL2 
distribution



Tweaking WebAssembly S-Expressions for 
Codewalker

• For a first proof-of-concept use of Codewalker to reason about 
WebAssembly, wanted a more “assembly-code-like” form 
• Closer to JVM-like M1 in the Codewalker distribution 

• Particularly didn’t want to deal with the lexical block branch 
complication 
• Converted to more conventional branch instruction 

• Conversion currently done by hand; could be readily automated



Iterative Factorial Test Case — Slight Tweak
;;(func (export "fac-iter") (param i64) (result i64) 
;; (local i64 i64) 
(get_local 0)    ;; 0 
(set_local 1)    ;; 1 
(i.const 1)      ;; 2 
(set_local 2)    ;; 3 
;; (block foo) 
;; (loop bar) 
(get_local 1)    ;; 4 
(i.const 0)      ;; 5 
(i.eq)           ;; 6 
(jumpt 10)       ;; 7 
;; (block baz) 
(get_local 1)    ;; 8 
(get_local 2)    ;; 9 
(i.mul)          ;; 10 
(set_local 2)    ;; 11 
(get_local 1)    ;; 12 
(i.const 1)      ;; 13 
(i.sub)          ;; 14 
(set_local 1)    ;; 15 
;; (end baz) 
(jump -12)       ;; 16 
;; (end bar) 
;; (end foo) 
(get_local 2)    ;; 17 
(halt)           ;; 18



Machine Modeling in ACL2
• We begin by defining a machine state data structure whose 

components are referenced and/or assigned with each instruction 
• Typically, we define machine state elements for the program counter, 

other fixed-function registers, the register file, data memory, and 
program memory, aggregating these into a single state variable 
• Register file components and memory locations are usually 

abstracted as Lisp lists, accessed with nth and modified with 
update-nth 

• ACL2 is a purely functional subset of Common Lisp; thus, in order to 
modify machine state, one must construct a new machine state with 
the modified components, and return that updated state. 
• For large machine states, this can become expensive (much 

memory allocation and garbage generation) 
• Fortunately, ACL2 also supports single-threaded objects, or stobjs, 

that ameliorate this problem



Machine Interpreter

• A top-level machine interpreter whose state is modelled as a stobj 
is normally written in ACL2 as follows, where webas is the name of 
our WebAssembly machine model interpreter: 

    (defun webas(s n) 
      (declare (xargs :stobjs (s))) 
      (if (zp n) 
          s 
          (let ((s (step s))) 
            (webas s (- n 1))))) 

• where s is the machine state, (step s) is a function that 
dispatches to an individual instruction function based on the 
current opcode, and zp is a standard ACL2 “equals 0” predicate



Instruction Definitions

• Individual instructions are defined as follows: 

;; Semantics of (I.ADD): increment the pc, pop two items off the  
;; arg-stack and push their sum. 

(defun execute-I.ADD (inst s) 
  (declare (xargs :stobjs (s)) 
           (ignore inst)) 
  (let ((u (top (arg-stack s))) 
        (v (top (pop (arg-stack s)))) 
        (arg-stack1 (pop (pop (arg-stack s))))) 
    (let* ((s (!arg-stack (push (+ v u) arg-stack1) s)) 
           (s (!pc (+ 1 (pc s)) s))) s))) 

• where (pc s) returns the value of the program counter stored in the state s; 
• (arg-stack s) returns the argument stack stored in s;  
• (!pc v s) sets the value of the program counter to v;  
• and (!arg-stack x s)  sets the argument stack to x.  These latter two 

functions update the state s.



Proof Results

We were able to prove that the WebAssembly iterative factorial program 
implements the following non-tail-recursive factorial function: 

(defun ! (n) 

  (if (zp n) 

      1 

      (* n (! (- n 1))))) 

Final Correctness Theorem: 

(defthm reg[2]-of-code-is-! 

  (implies (and (hyps s) 

                (program1p s) 

                (nat-listp (rd :locals s)) 

                (nat-listp (rd :arg-stack s)) 

                (equal (rd :pc s) 0)) 

           (equal (nth 2 (rd :locals (webas s (clk-0 s)))) 

                  (! (nth 0 (rd :locals s))))))



Conclusion

We utilized Codewalker to prove correctness properties about 
small WebAssembly programs. 

No significant results herein; just wanted to learn about 
WebAssembly and exercise Codewalker on a new instruction set 

Verification: 
• Codewalker enables automated formal proofs of correctness 
• Codewalker provides “pluggable” instruction set definitions 
• Verification can occur at the basic block level, thus allowing for 

incremental progress 
Validation: 
• ACL2 single-threaded objects allows for reasonably speedy 

execution of the WebAssembly code interpreter, enabling basic 
validation testing


