~ TRUST MATTERS,

e A TR T BTN
el Stk LS

J 1,‘“. vy

mbly Code

- .‘ - ‘1'_4 ~
-\,-,f-~11<~§:f»‘ oy v

-

Reasoning About WebAsse
Using Codewalker

David Hardin
Advanced Technology Center

david.hardin@rockwellcollins.com Rockwe
Collins



Rockwe

Objectives

e Reason about machine code generated from high-level languages
e Eliminate need to trust compiler frontends by reasoning about
compiler intermediate forms
e Exercise the ACL2 theorem prover, and the integrated
Codewalker facility, to prove properties of low-level programs
e Highly automated proof system — minimal user interaction
e High-speed, executable specifications — can be used for
validation testing
¢ “"Pluggable” Instruction Set definitions
e Learn about WebAssembly and how to prove correctness for
WebAssembly programs
e Motivated by previous work on reasoning about LLVM code
using Codewalker (ACL2-15 paper)

ey




Rocky s A

WebAssembly
e WebAssembly is a new intermediate form for the Internet, under

development by Apple, Google, Microsoft, and Mozilla
e To be supported on WebKit, Chrome, Edge, and Firefox

e Web site: http://webassembly.org; WebAssembly on github

e PLDI 2017 paper, also available on the WebAssembly github:

Bringing the Web up to Speed with WebAssembly

Andreas Haas Andreas Rossberg Derek L. Schuff* Ben L. Titzer Michael Holman
Google GmbH, Germany / *Google Inc, USA Microsoft Inc, USA
{ahaas,rossberg,dschuff,titzer }@google.com michael.holman@microsoft.com

Dan Gohman Luke Wagner Alon Zakai JF Bastien
Mozilla Inc, USA Apple Inc, USA

{sunfishcode,luke,azakai}@mozilla.com jfbastien@apple.com


http://webassembly.org

Collins

WebAssembly (cont'd.)

e Stack-based intermediate, similar to JVM and Microsoft IL

e Emphasis on safe execution, portability, speed of JIT'ed code
e Operational semantics in OCaml

e WebAssembly output by LLVM compiler

e Runnable via Javascript API from browsers

e OQutput formats include binary, as well as s-expression-based
representation

e Some Technical Differences relative to the JVM:
e Instruction set not Java-centric
e Not as object- and thread-oriented as the JVM
e Branches are taken relative to the current lexical block

e Eliminates instructions such as goto that make bytecode
verification more challenging

e Some differences in the stack manipulation instructions



Rocky s A

Example: Iterative Factorial Test Case, from
WebAssembly github

(func (export "fac-iter") (param i164) (result i64)
(local i64 i64)
(set_local 1 (get_local 0))
(set_local 2 (i64.const 1))

(block
(loop
(1f
(i64.eq (get_local 1) (i64.const 0))
(br 2) ;, branch out two levels to last instruction
(block

(set_local 2 (i64.mul (get local 1) (get local 2)))
(set _local 1 (i64.sub (get local 1) (i64.const 1)))))
(br 0))) ;; branch to beginning of current block

(get_local 2))



Rockwe

ey

Codewalker

e A new facility as of ACL2 7.0 (January 2015), due to J Moore

e Performs “decompilation into logic” of a machine-code program to
a series of “semantic functions” that summarize the program’s
effect on machine state

e Works with an instruction set description written in the usual ACL2
“machine interpreter” style, as earlier described

e Produces proofs that the generated semantic functions are correct

e Inspired by Magnus Myreen’s Ph.D. thesis (2008)

e Myreen’s decompiler utilizes the HOL4 theorem prover

e For more details, see books/projects/codewalker in the ACL2
distribution



Rockwe

ey

Tweaking WebAssembly S-Expressions for
Codewalker

e For a first proof-of-concept use of Codewalker to reason about
WebAssembly, wanted a more “assembly-code-like” form
e C(Closer to JVM-like M1 in the Codewalker distribution

e Particularly didn’t want to deal with the lexical block branch
complication

e Converted to more conventional branch instruction

e Conversion currently done by hand; could be readily automated



Rocky s A

Iterative Factorial Test Case — Slight Tweak

;; (func (export '"fac-iter") (param i64) (result ié64)
;; (local i64 i64)

(get_local 0) ;0
(set_local 1) ;001
(i.const 1) ;2
(set_local 2) ;03
;, (block foo)

;7 (loop bar)
(get_local 1) ;0 4
(i.const 0) ;7 5
(i.eq) ;6
(jumpt 10) P
;, (block baz)
(get_local 1) ;8
(get_local 2) ;709
(i.mul) ;5 10
(set_local 2) ;0 11
(get_local 1) ;12
(i.const 1) ;; 13
(i.sub) ;; 14
(set_local 1) ;; 15
;, (end baz)

(jump -12) ;16

;, (end bar)
;, (end foo)
(get_local 2) ;0 17
(halt) ;; 18



Rockwe

ey

Machine Modeling in ACL2

e We begin by defining a machine state data structure whose
components are referenced and/or assigned with each instruction
e Typically, we define machine state elements for the program counter,
other fixed-function registers, the register file, data memory, and
program memory, aggregating these into a single state variable
e Register file components and memory locations are usually
abstracted as Lisp lists, accessed with nth and modified with
update-nth
e ACL2 is a purely functional subset of Common Lisp; thus, in order to
modify machine state, one must construct a new machine state with
the modified components, and return that updated state.
e For large machine states, this can become expensive (much
memory allocation and garbage generation)
e Fortunately, ACL2 also supports single-threaded objects, or stobjs,
that ameliorate this problem




Rockwe

ey

Machine Interpreter

e A top-level machine interpreter whose state is modelled as a stobj
is normally written in ACL2 as follows, where webas is the name of
our WebAssembly machine model interpreter:

(defun webas (s n)
(declare (xargs :stobjs (s)))
(i1f (zp n)
s
(let ((s (step s)))
(webas s (- n 1)))))

e Wwhere s is the machine state, (step s) is a function that
dispatches to an individual instruction function based on the
current opcode, and zp is a standard ACL2 “equals 0” predicate



Rockwe

ey

Instruction Definitions

e Individual instructions are defined as follows:

;; Semantics of (I.ADD): increment the pc, pop two items off the
;; arg-stack and push their sum.

(defun execute-I.ADD (inst s)
(declare (xargs :stobjs (s))
(ignore inst))
(let ((u (top (arg-stack s)))
(v (top (pop (arg-stack s))))
(arg-stackl (pop (pop (arg-stack s)))))
(let* ((s ('arg-stack (push (+ v u) arg-stackl) s))
(s (!pc (+ 1 (pc s)) s))) s)))

where (pc s) returns the value of the program counter stored in the state s;
e (arg-stack s) returns the argument stack stored in s;

('pc v s) sets the value of the program counter to v;

and ('arg-stack x s) sets the argument stack to x. These latter two
functions update the state s.



Rocky s A

Proof Results

We were able to prove that the WebAssembly iterative factorial program
implements the following non-tail-recursive factorial function:

(defun ! (n)
(if (zp n)
1
(*n (! (-n 1)))))

Final Correctness Theorem:

(defthm reg[2]-of-code-is-!
(implies (and (hyps s)
(programlp s)
(nat-listp (rd :locals s))
(nat-listp (rd :arg-stack s))
(equal (rd :pc s) 0))
(equal (nth 2 (rd :locals (webas s (clk-0 s))))
(! (nth 0 (rd :locals s))))))



Rockwe

ey

Conclusion

We utilized Codewalker to prove correctness properties about
small WebAssembly programs.

No significant results herein; just wanted to learn about
WebAssembly and exercise Codewalker on a new instruction set

Verification:
e Codewalker enables automated formal proofs of correctness
e Codewalker provides “pluggable” instruction set definitions
e Verification can occur at the basic block level, thus allowing for
incremental progress
Validation:
e ACL2 single-threaded objects allows for reasonably speedy
execution of the WebAssembly code interpreter, enabling basic
validation testing



