
THE PROBLEM TOWARDS A SOLUTION A SEQUENCE OF CHECKERS RELATED WORK CONCLUSION REFERENCES

Development of a Verified, Efficient Checker
for SAT Proofs

Matt Kaufmann
(With contributions from Marijn Heule, Warren Hunt, and

Nathan Wetzler)

The University of Texas at Austin

ACL2 Workshop 2017

May 22, 2017

1/21



THE PROBLEM TOWARDS A SOLUTION A SEQUENCE OF CHECKERS RELATED WORK CONCLUSION REFERENCES

OVERVIEW

Boolean Satisfiability (SAT) solvers are proliferating and useful.

PROBLEM: How can we trust their claims of unsatisfiability?

SOLUTION:

I SAT Solver emits a proof, p0

I DRAT-trim (from Marijn Heule) processes p0, creating
smaller proof p1 that includes hints

I Verified ACL2 program checks p1

This talk is high-level, avoiding details such as “RAT” and
“DRAT”.

2/21



THE PROBLEM TOWARDS A SOLUTION A SEQUENCE OF CHECKERS RELATED WORK CONCLUSION REFERENCES

OUTLINE

THE PROBLEM

TOWARDS A SOLUTION

A SEQUENCE OF CHECKERS

RELATED WORK

CONCLUSION

REFERENCES

3/21



THE PROBLEM TOWARDS A SOLUTION A SEQUENCE OF CHECKERS RELATED WORK CONCLUSION REFERENCES

OUTLINE

THE PROBLEM

TOWARDS A SOLUTION

A SEQUENCE OF CHECKERS

RELATED WORK

CONCLUSION

REFERENCES

4/21



THE PROBLEM TOWARDS A SOLUTION A SEQUENCE OF CHECKERS RELATED WORK CONCLUSION REFERENCES

THE PROBLEM

Boolean Satisfiability (SAT) solvers are proliferating and useful.

I They verify unsatisfiability of a Boolean formula,
represented as a list of clauses (each a disjunction of literals).

I Example of unsatisfiable formula:

(
(1 2 -3) ; 1 OR 2 OR (not 3)
(-1) ; (not 1)
(-2 -3) ; (not 2) OR (not 3)
(3) ; 3
)

But how can we trust SAT solvers?

5/21



THE PROBLEM TOWARDS A SOLUTION A SEQUENCE OF CHECKERS RELATED WORK CONCLUSION REFERENCES

OUTLINE

THE PROBLEM

TOWARDS A SOLUTION

A SEQUENCE OF CHECKERS

RELATED WORK

CONCLUSION

REFERENCES

6/21



THE PROBLEM TOWARDS A SOLUTION A SEQUENCE OF CHECKERS RELATED WORK CONCLUSION REFERENCES

TOWARDS A SOLUTION (1)

Modern SAT solvers [2] emit proofs!

I Proof step: Add a clause to the formula (conjunction of
clauses) that preserves satisfiability.

I Eventually add the empty clause.
I So final formula is unsatisfiable.
I So input formula must be unsatisfiable!

I Also legal: proof steps that delete a clause from the
formula.

I Clearly preserves satisfiability.

7/21



THE PROBLEM TOWARDS A SOLUTION A SEQUENCE OF CHECKERS RELATED WORK CONCLUSION REFERENCES

TOWARDS A SOLUTION (2)

But how do we know that these “proofs” are valid?

We check them with software programs called checkers!

But how do we know that a checker is sound? Inspection?

I Key property: clause addition preserves satisfiability

I Checkers (e.g., DRAT-trim) are typically simpler than
solvers...

I ... but not that simple, and inspection is error-prone.

8/21



THE PROBLEM TOWARDS A SOLUTION A SEQUENCE OF CHECKERS RELATED WORK CONCLUSION REFERENCES

TOWARDS A SOLUTION (3)
Wetzler proved soundness of an ACL2-based solution [6, 5, 4].
I’ll explain our “[lrat-4]” and “[lrat-5]” versions of soundness:

(implies (and (formula-p formula)
(refutation-p$ proof formula))

(not (satisfiable formula)))

(let ((formula
(mv-nth 1 (proved-formula cnf-file clrat-file

chunk-size debug
nil ; incomplete-okp
ctx state))))

(implies formula
(not (satisfiable formula))))

; Print proved formula, to diff against input formula:

(defmacro print-formula (formula &optional filename)
...)

9/21



THE PROBLEM TOWARDS A SOLUTION A SEQUENCE OF CHECKERS RELATED WORK CONCLUSION REFERENCES

TOWARDS A SOLUTION (4)

Problem: Efficiency.

On one example:

I DRAT-trim: 1.5 seconds
I Verified checker [5]: ∼ 1 week

NOTE:

I Wetzler’s ITP 2013 checker [5] was intended to be a proof
of concept, not an efficient tool.

I He did some preliminary work towards increasing
efficiency (no timings reported).

10/21



THE PROBLEM TOWARDS A SOLUTION A SEQUENCE OF CHECKERS RELATED WORK CONCLUSION REFERENCES

OUTLINE

THE PROBLEM

TOWARDS A SOLUTION

A SEQUENCE OF CHECKERS

RELATED WORK

CONCLUSION

REFERENCES

11/21



THE PROBLEM TOWARDS A SOLUTION A SEQUENCE OF CHECKERS RELATED WORK CONCLUSION REFERENCES

A SEQUENCE OF CHECKERS (1)

1. [rat] Nathan’s ITP 2013 RAT checker [5]: no deletion
2. [drat] Support deletion (thus implementing DRAT)
3. [lrat-1] Avoid search and delete clauses efficiently, using

fast-alists (applicative hash tables) and a linear proof
format, and with soundness proved from scratch

4. [lrat-2] Shrink fast-alists to keep formulas small
5. [lrat-3] Minor tweak to formula data-structure
6. [lrat-4] Use stobjs for assignments
7. [lrat-5] Support incremental file reading using improved

read-file-into-string; verify improved soundness
theorem

12/21

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FAST-ALISTS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____STOBJ
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____READ-FILE-INTO-STRING


THE PROBLEM TOWARDS A SOLUTION A SEQUENCE OF CHECKERS RELATED WORK CONCLUSION REFERENCES

A SEQUENCE OF CHECKERS (2)

This table shows times (in seconds) for some checker runs
(including parsing), on examples provided by Marijn Heule.
Test “R_4_4_18” is the one that took a week with Wetzler’s ITP
2013 checker.

benchmark [lrat-1] [lrat-3] [lrat-4] [lrat-5]
(fast-alist) (shrink) (stobjs) (incremental)

uuf-100-3 0.09 0.03 0.05 0.01
tph6[-dd] 3.08 0.57 0.33 0.33
R_4_4_18 164.74 5.13 2.23 2.24
transform 25.63 6.16 5.81 5.82
Schur_161_5_d43 5341.69 2355.26 840.04 259.82

NOTE: For the last (Schur) example: 4.3 minutes for checker
adds little to the DRAT-trim time of 20 minutes.

13/21



THE PROBLEM TOWARDS A SOLUTION A SEQUENCE OF CHECKERS RELATED WORK CONCLUSION REFERENCES

A SEQUENCE OF CHECKERS (3)
This project illustrates the interplay between ACL2 as a
programming language and as a theorem prover:

I Optimize the program for efficiency.

I Deal with proving correctness for the optimizations.

Profiling was very useful.

Plan: Our [lrat-5] checker will be used in the 2017 SAT
competition.

Time comparison on a set of examples (courtesy of Marijn
Heule and J Moore):

DRAT-trim 210223 seconds
[lrat-5] checker 20811 seconds

14/21

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PROFILE


THE PROBLEM TOWARDS A SOLUTION A SEQUENCE OF CHECKERS RELATED WORK CONCLUSION REFERENCES

OUTLINE

THE PROBLEM

TOWARDS A SOLUTION

A SEQUENCE OF CHECKERS

RELATED WORK

CONCLUSION

REFERENCES

15/21



THE PROBLEM TOWARDS A SOLUTION A SEQUENCE OF CHECKERS RELATED WORK CONCLUSION REFERENCES

RELATED WORK

I [1] The Linear RAT (LRAT) proof format and its use in our
ACL2 checker, as well as a corresponding Coq-based
checker (which takes 10 minutes on one example
compared to our 9 seconds)

I [3] An Isabelle development using a refinement
framework that (independently of our work) produces an
efficient verified checker

16/21



THE PROBLEM TOWARDS A SOLUTION A SEQUENCE OF CHECKERS RELATED WORK CONCLUSION REFERENCES

OUTLINE

THE PROBLEM

TOWARDS A SOLUTION

A SEQUENCE OF CHECKERS

RELATED WORK

CONCLUSION

REFERENCES

17/21



THE PROBLEM TOWARDS A SOLUTION A SEQUENCE OF CHECKERS RELATED WORK CONCLUSION REFERENCES

CONCLUSION
There is now an efficient formally verified SAT checker!

I On a large example, its time of 4.3 minutes (including
parsing) adds relatively little to the DRAT-trim time of 20
minutes.

These checkers are available in the community books under
books/projects/sat/lrat/:

[rat] projects/sat/proof-checker-itp13/

[drat] projects/sat/lrat/early/drat/

[lrat-1] projects/sat/lrat/early/rev1/

[lrat-2] projects/sat/lrat/early/rev2/

[lrat-3] projects/sat/lrat/list-based/

[lrat-4] projects/sat/lrat/stobj-based/

[lrat-5] projects/sat/lrat/incremental/

18/21

https://github.com/acl2/acl2/tree/master/books/projects/sat/lrat


THE PROBLEM TOWARDS A SOLUTION A SEQUENCE OF CHECKERS RELATED WORK CONCLUSION REFERENCES

OUTLINE

THE PROBLEM

TOWARDS A SOLUTION

A SEQUENCE OF CHECKERS

RELATED WORK

CONCLUSION

REFERENCES

19/21



THE PROBLEM TOWARDS A SOLUTION A SEQUENCE OF CHECKERS RELATED WORK CONCLUSION REFERENCES

REFERENCES

A much more detailed (but somewhat outdated – no mention
of [lrat-5]) version of this talk is available on the ACL2 seminar
website.

A preprint of a paper on this work (with Heule, Hunt, and
Wetzler) is at:
http://www.cs.utexas.edu/users/kaufmann/
papers/lrat-preprint/index.html.

The final slide has references for citations in this talk.

Thank you for your attention!

20/21

http://www.cs.utexas.edu/users/moore/acl2/seminar/2017-02-03-kaufmann/index.html
http://www.cs.utexas.edu/users/moore/acl2/seminar/2017-02-03-kaufmann/index.html
http://www.cs.utexas.edu/users/kaufmann/papers/lrat-preprint/index.html
http://www.cs.utexas.edu/users/kaufmann/papers/lrat-preprint/index.html
http://www.cs.utexas.edu/users/kaufmann/papers/lrat-preprint/index.html
http://www.cs.utexas.edu/users/kaufmann/papers/lrat-preprint/index.html


THE PROBLEM TOWARDS A SOLUTION A SEQUENCE OF CHECKERS RELATED WORK CONCLUSION REFERENCES

[1] Luís Cruz-Filipe, Marijn Heule, Warren Hunt, Matt Kaufmann, and Peter
Schneider-Kamp. Efficient certified RAT verification. In CADE 2017. To appear.

[2] Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with
extended resolution. In Maria Paola Bonacina, editor, Automated Deduction -
CADE-24 - 24th International Conference on Automated Deduction, Lake Placid, NY,
USA, June 9-14, 2013. Proceedings, volume 7898 of LNCS, pages 345–359. Springer,
2013.

[3] Peter Lammich. Efficient verified (UN)SAT certificate checking. In CADE 2017. To
appear, 2017.

[4] Nathan Wetzler. Supplemental material for a paper appearing in interactive
theorem proving 2013 [RAT proof-checker]. https://github.com/acl2/
acl2/tree/master/books/projects/sat/proof-checker-itp13/,
Accessed: December 2016.

[5] Nathan Wetzler, Marijn J.H. Heule, and Jr. Warren A. Hunt. Mechanical
verification of SAT refutations with extended resolution. In ITP 2013, volume 7998
of LNCS, pages 229–244. Springer, 2013.

[6] Nathan David Wetzler. Efficient, Mechanically-Verified Validation of Satisability
Solvers. PhD thesis, University of Texas at Austin, 2015.

21/21

https://github.com/acl2/acl2/tree/master/books/projects/sat/proof-checker-itp13/
https://github.com/acl2/acl2/tree/master/books/projects/sat/proof-checker-itp13/

	The Problem
	Towards a Solution
	A Sequence of Checkers
	Related Work
	Conclusion
	References

