
Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Highly Restricted

An Update on Oracle’s Use of ACL2

May 22, 2017

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted

Current In-House Theorem Proving Team

• Andrew Brock, Jo Ebergen, Keshav Kini, Dmitry Nadezhin, David Rager

2

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted

Outline

• Floating-point

• Control logic verification, a case of starvation

• Invariant extraction

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted 4

On Floating-Point

• Still doing some floating-point work

• Proofs are required before tape out

• Still finding and verifying performance

improvements

• Not the focus of this talk

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted

Outline

• Floating-point

• Control logic verification, a case of starvation

• Invariant extraction

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted

A Control Logic Problem to Solve

• Can we prove that a certain class of instructions will progress?

– Alternatively: can we construct an execution that starves a particular
instruction?

• Hardware implementation challenges:

– 8-way hardware threading

– Out of order execution

– Instructions that take a long time to execute

– Power management

– 1

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted

A Case of Starvation

• <Picture elided>

• Difficult to imagine problematic executions; need help from tool (ACL2 stack)

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted 8

Applicable Models

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted

Winds in Our Favor

• Small and bounded durations of concern

– Typically less than 100 cycles

• Models for Device Under Proof (DUP) and devices surrounding the DUP can be
written in GL-friendly primitives (logand, loghead, etc.)

• Model for DUP is proven bit-for-bit equivalent to the Verilog RTL

• Hand-written external models are much simpler than an extracted model

– Can be easier to play with external modules and see if it breaks proofs

– No concrete simulation necessary to test ideas

• ACL2, GL, and SAT solvers are remarkably powerful

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted

Winds Against Us

• Writing the intermediate model for the DUP that’s at a higher level than SVEX
takes time

– Already automated part of this but still work to do

• Hand-written models for the external units are vulnerable to typos, connection
design flaws, and other mistakes

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted

End Result

• We constructed an execution path for concurrently executing instructions that
resulted in indefinitely preventing a particular instruction from executing

– ACL2 + GL + SAT (glucose 3.0) generated the counterexample

• Represented a bug in the design

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted

Benefits of a Symbolic Trajectory Evaluation-like Approach (defsvtv)

• Fast to get up and running

• If the proofs go through automatically, don’t have to think about what’s
happening in each cycle nearly as much

– Can speedup process by 2-5x

• Great for datapath verification, so long it’s okay to narrow the scope of the proof
by tying off some control logic signals

• Svtv-debug timing diagrams easily accessible and intuitive

• Doesn’t seem as good for verifying control logic1.

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted

Outline

• Floating-point

• Control logic verification, a case of starvation

• Invariant extraction

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted

Two Classes of Invariants (for today only)

• Single-cycle invariant

• Multi-cycle invariant

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted

Single-Cycle Invariant

• Many ways to extract, we use a single defsvtv simulation cycle

• Inputs (and overrides) come in

• Read outputs one simulation cycle later

• Make simple functional statement about outputs (and internals) in terms of
inputs

• E.g., “this internal wire represents a partial product of inputs A and B”

• E.g., “this output represents the addition of some internal wires”

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted

Converting a Single-Cycle Invariant into Multi-Cycle

• Step the single-cycle invariant (function) recursively

• Add a variable to keep track of the history of inputs

• Prove a lemma about what it means to compose a part of the function during the
first cycle with another part of the function during the second cycle

• Leverage that lemma and the single-cycle invariant to enrich your invariant with
a specification with what happens across two cycles

• Continue process until you’ve specified and proven as many cycles deep as you
like

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted

Example Code, 8-bit Multiplier

• Verilog

• Parsing the Verilog

• Definition: Step-n

• Lemma: One-cycle-invariant

• Theorem: Two-cycle-invariant-via-rewriting

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted

Example Code, Verilog

module mul (result_ff, a, b, en, clk);

output wire [15:0] result_ff;

input [7:0] a, b;

input en;

input clk;

wire [7:0] a_ff, b_ff;

wire [15:0] result;

wire [9:0] pp0;

wire [11:2] pp1;

wire [13:4] pp2;

wire [15:6] pp3;

theflop #(8) a_flop (a_ff, a, clk);

theflop #(8) b_flop (b_ff, b, clk);

pp_mul pp0_mul (pp0, a_ff, b_ff[1:0], clk);

pp_mul pp1_mul (pp1, a_ff, b_ff[3:2], clk);

pp_mul pp2_mul (pp2, a_ff, b_ff[5:4], clk);

pp_mul pp3_mul (pp3, a_ff, b_ff[7:6], clk);

assign result = {6'b0,pp0} + {4'b0,pp1,2'b0}
+ {2'b0,pp2,4'b0} + {pp3,6'b0};

theflop #(16) result_flop (result_ff, result,
clk);

endmodule

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted

Example Code, Parsing the Verilog

(defsvtv mul-direct

:design *mul*

:inputs '(("clk" 0 ~)

("a" a _)

("b" b _))

:overrides '(("pp0_mul.pp_in" pp0)

("pp1_mul.pp_in" pp1)

("pp2_mul.pp_in" pp2)

("pp3_mul.pp_in" pp3)

("result" o))

:internals '(("pp0_mul.pp_in" _ pp0)

("pp1_mul.pp_in" _ pp1)

("pp2_mul.pp_in" _ pp2)

("pp3_mul.pp_in" _ pp3))

:outputs '(("result" _ o)))

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted

Example Code, Definition: Step-n

(define step-n ((input-list input-list-p)

(input-history input-list-p)

(output-history output-list-p)

(st-history st-list-p)

(n natp))

:returns (mv (input-history input-list-p :hyp :guard)

(output-history output-list-p
:hyp :guard)

(st-history st-list-p :hyp :guard))

(cond ((zp n)

(mv input-history output-history st-history))

((atom input-list)

(mv input-history output-history st-history))

((atom st-history)

(mv input-history output-history st-history))

(t

(mv-let

(output new-st)

(single-step (car input-list)
(car st-history))

(step-n (cdr input-list)

(cons (car input-list)

input-history)

(cons output

output-history)

(cons new-st st-history)

(1- n))))))

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted

Example Code, Lemma: One-cycle-invariant

• Proved automatically with GL and created corollary

(defthm one-cycle-invariant-corollary

(implies (and (unsigned-8-p a)

(unsigned-8-p b)

(st-p st))

(b* ((input (make-input :a a

:b b))

((output new-st)

(single-step input st)))

(and (equal

(st->pp0 new-st)

(* a (part-select b :low 0 :high 1)))

(equal

(st->pp1 new-st)

(* a (part-select b :low 2 :high 3)))

(equal

(st->pp2 new-st)

(* a (part-select b :low 4 :high 5)))

(equal

(st->pp3 new-st)

(* a (part-select b :low 6 :high 7)))

(equal

(output->o output)

(loghead 16

(+ (st->pp0 st)

(ash (st->pp1 st) 2)

(ash (st->pp2 st) 4)

(ash (st->pp3 st) 6))))))))

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted

Example Code, Theorem: Two-cycle-invariant-via-rewriting

(defruled two-cycle-invariant-via-rewriting

(implies (and (unsigned-8-p a)

(unsigned-8-p b)

(unsigned-8-p nonsense-8-p-0)

(unsigned-8-p nonsense-8-p-1)

(st-p st))

(b* ((input0 (make-input :a a

:b b))

(input1 (make-input :a nonsense-8-p-0

:b nonsense-8-p-1))

((input-history output-history ?st)

(step-n (list input0 input1)

nil

nil

(list st)

2)))

(equal (output->o (car output-history))

(* (input->a (cadr input-history))

(input->b (cadr input-history)))))))

:expand ((step-n (list (input a b)

(input nonsense-8-p-0 nonsense-8-p-1))

nil nil (list st)

2)

(step-n (list (input nonsense-8-p-0 nonsense-8-p-1))

(list (input a b))

(list (mv-nth 0 (single-step (input a b) st)))

(list (mv-nth 1 (single-step (input a b) st))

st)

1))
:enable (an-arithmetic-property one-cycle-invariant-corollary))

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted

Conclusion

• Symbolic Trajectory Evaluation (defsvtv) is great for data path verification

• Single-cycle invariants with recursive calls great for starvation proofs

– Due in part to the power of ACL2 + GL + SAT

• Multi-cycle invariants perhaps necessary* for reasoning about a mixture of
control logic and datapath

* Recent FSM additions to svtv library, GLMC, etc. may subsume this need

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted

Backup

Abstract
Since the verification of the division/square-root unit, Oracle has focused on verifying
control-oriented logic. We will describe how we used the tools stack and hand-written
model for parts of the circuit to verify one of our control logic units. Taking this approach
a step further, we hope to illustrate with a simple example how one can extract a single-
cycle invariant and then grow that invariant to describe a circuit's behavior across
multiple clock cycles.

