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Summary

● Define a set of 3D matrices
● Prove all the elements of the set are different from 

each other
● Formalize 3D rotations in ACL2(r)
● Prove every element of the set is a rotation
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Motivation

● The Banach-Tarski theorem in ACL2(r)
● “The Banach-Tarski Paradox” by Tom Weston1
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Method
● Define a set of words of rank 2

example words: aa, bb, a-1b, …
● Prove group properties for the set of words
● Associate a, b, a-1, b-1 with specific 3D rotations

For example: 

● Compose each word with matrix multiplication
 The 3D matrix we get with the word aa is A×A

● Prove these matrices are rotations and different from 
each other



1. A Free Group of Reduced Words

2. A Free Group of 3D matrices

3. A Free Group of 3D Rotations of rank 2

4. Next steps
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Weak Word

(weak-wordp w) returns true if w is:

▪ An Empty list, or

▪ A list of characters that contains a or a-1 or b or b-1

▪ e.g., (), (a b b-1)

▪ In the ACL2(r) source files we have used characters 

#\a, #\b, #\c and #\d respectively
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Reduced Word

(reducedwordp w) returns true if w is:

▪ a weak-word, and

▪ a and a-1 or b and b-1 does not appear next to each 

other in the list

▪ e.g., (), (a b b a-1)

▪ (a a-1) is not a reduced word

A reduced word ⇒ it is a weak word
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Compose - Group operation
(compose x y) = (word-fix (append x y)) 

where x and y are weak-words
▪ append operation appends two lists
▪ word-fix fixes the list so that the result is a reduced 

word

▪ e.g., (compose (a b b a) (a-1 b-1 b)) 

= (word-fix (a b b a a-1 b-1 b)) 

= (a b b)
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Useful Lemmas
▪ (reducedwordp x) ⇒ (weak-wordp x)

▪ (weak-wordp x) ⇒ (reducedwordp (word-fix x))

▪ (weak-wordp x) ⋀ ((word-fix x) = x) 

⇒ (reducedwordp x)

▪ (weak-wordp x) ⇒ (weak-wordp (cdr x))

▪ (reducedwordp x) ⇒ ((word-fix x) = x)

▪ (reducedwordp x) ⇒ (reducedwordp (cdr x))
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Inverse Operation

(word-inverse x) = (rev (word-flip x)) 
where x is a weak-word

▪ word-flip operation changes the characters a to a-1, 
b to b-1, a-1 to a and b-1 to b. 

▪ e.g., (word-flip (a b b)) = (a-1 b-1 b-1)
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The Identity Element

▪ Empty list is the identity element
▪ (reducedwordp x) ⇒ (word-fix (append () x)) = x 

⇒ (compose () x) = x

▪ (reducedwordp x) ⇒ (word-fix (append x ())) =  x

⇒ (compose x ()) = x
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Closure Property
Intermediate Lemmas:
▪ (weak-wordp x) ⋀ (weak-wordp y) 

⇒ (weak-wordp (append x y))
▪ (reducedwordp x) ⋀ (reducedwordp y) 

⇒ (weak-wordp (append x y))
Closure:
(reducedwordp x) ⋀ (reducedwordp y) 

⇒ (reducedwordp (word-fix (append x y))) 
    [∵ (weak-wordp x) ⇒    (reducedwordp (word-fix 
x))]
⇒ (reducedwordp (compose x y))
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Associative Property
Key Lemmas:

▪ (weak-wordp x) ⋀ (weak-wordp y) ⋀ (weak-wordp z) 
⇒ (word-fix (append x y z))

= (word-fix (append x (word-fix (append y z))))
▪ (weak-wordp x) ⇒ (word-fix (rev x)) = (rev (word-fix x))

▪ Proved by induction on x
▪ e.g., (word-fix (rev (a b b-1)) = (word-fix (b-1 b a)) = (a) 

(rev (word-fix (a b b-1)) = (rev (a)) = (a)
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Associative Property

(reducedwordp x) ⋀ (reducedwordp y) ⋀ (reducedwordp z)  ⇒   
(compose (compose x y) z) = (compose x ( compose y z))
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Inverse Property
Intermediate Lemmas:

▪ (reducedwordp x) ⇒ (reducedwordp (word-inverse x))
▪ (word-fix (rev x)) = (rev x)
▪ (reducedwordp (word-flip x))

▪ (weak-wordp x) ⇒ (word-inverse (word-inverse x)) = x
▪ nth values of (word-inverse (word-inverse x) and x are equal
▪ Using equal-by-nths lemma

Inverse exists (using the above lemmas and the associativity) :

▪ (reducedwordp x) ⇒ (compose x (word-inverse x)) = ()
▪ (reducedwordp x) ⇒ (compose (word-inverse x) x) = ()
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Matrix Algebra



▪ matrix equivalence

▪ matrix multiplication

▪ matrix transpose

▪ scalar multiplication

▪ Associativity of the matrix multiplication

▪ properties about dimensions of the matrices

Newly added:

▪ r3-matrixp (predicate for a 3D matrix in ACL2(r))
▪ r3-m-determinant (determinant of a 3D matrix)
▪ r3-m-inverse (Inverse of a 3D matrix)
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Matrix Algebra using array2p
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A Set of 3D Matrices

(rotation w) ≔ if w is an empty list then return id-matrix
else if (car w) = a: return (A × (rotation (cdr w))
else if (car w) = b: return (B × (rotation (cdr w)))
else if (car w) = a-1: return (A-1 × (rotation (cdr w)))
else if (car w) = b-1: return (B-1 × (rotation (cdr w)))

set = { (rotation w) | (reducedwordp w) }
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A Free Group of 3D matrices
Let p = (0,1,0), then: 
If (reducedwordp w) ⋀ ((len w) = n) ⋀ (((rotation w) × p) = q) ⋀ n > 0

we have shown by induction:
 q is of the form (⅓n)(a√2, b, c√2)

where a, b and c are integers

If w is an empty list, then (rotation w) is an identity matrix, then
q = p = (0,1,0) ⇒ a ≡ b ≡ c ≡ 0 (mod 3)
(This is not possible)
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A Free Group of 3D matrices
If w is a reduced word and let’s say (n-mod3 w) = (a,b,c) (mod 3), then

(n-mod3 aw) = (0, b - c, c - b) (mod 3) 
(n-mod3 a-1w) = (0, b + c, c + b)  (mod 3)
(n-mod3 bw) = (a + b, a + b, 0) (mod 3)
(n-mod3 b-1w) = (a - b, b - a, 0) (mod 3)

By induction:
If w is a reduced word, and 

if (car w) = a, then (n-mod3 w) = (0, 1, 2) or (0, 2, 1)
if (car w) = a-1, then (n-mod3 w) = (0, 1, 1) or (0, 2, 2) 
if (car w) = b, then (n-mod3 w) = (1, 1, 0) or (2, 2, 0) 
if (car w) = b-1, then (n-mod3 w) = (2, 1, 0) or (1, 2, 0)

∴ (n-mod3 w) ≠ (0,0,0) ⋀ ((len w) > 0)  ⇒ (rotation w) ≠ I
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A Free Group of 3D Matrices
Key lemma:

if w1,,w2 ,are reduced words then
(rotation w1) × (rotation w2) = (rotation (compose w1 w2)

Since (rotation w) ≠ I, using the above lemma:
if w1,,w2 ,are two different reduced words having length > 1 then

(rotation w1) ≠ (rotation w2)
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Modular addition and 
subtraction
(A + B) mod C = (A mod C + B mod C) mod C

(A - B) mod C = (A mod C - B mod C) mod C

Proved using properties from the book:

workshops/1999/embedded/Exercises/Exercise1-2/Exercise1.2
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3D Rotations
M is a 3D rotation if:

● M is a 3D matrix

● M-1 = MT

● det(M) = 1
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Properties of 3D Rotations
1. (r3-matrixp m1) ⋀ (r3-matrixp m2) ⇒ (r3-matrix (m1× m2))

2. (r3-matrixp m1) ⋀ (r3-matrixp m2) ⇒ det(m1× m2)) = det(m1) × det(m2)

3. (r3-matrixp m1) ⋀ (r3-matrixp m2) ⋀ det(m1) ≠ 0 ⋀ det(m2) ≠ 0

(m1× m2)-1 = m2
-1× m1

-1

4. (r3-rotationp m) ⇒ (r3-rotationp m-1)

5. (r3-rotationp m1) ⋀ (r3-rotationp m2) ⇒ (r3-rotationp (m1× m2))

6. Rotations preserve distance
If p1= (x1,y1,z1) and p2 = R × p1 = (x2,y2,z2), then 

x1
2  + y1

2  + z1
2  = x2

2  + y2
2 + z2

2 
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A Free Group of Rotations

By induction, if w is a reduced word, then by using the properties:

▪ (rotation w) is a 3D rotation
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= +

Any Solid ball B in R3 can be cut into finitely many 
pieces which can be rotated to form 2 copies of B1

The Banach-Tarski Theorem



There is a countable set D ⊆ S2 such that 
S2 − D can be divided into 5 pieces which can be 

rotated to form 2 copies of S2 − D.1
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The Hausdorff Paradox



For the set of reduced words W(a,b):

▪ W(a,b) = () ⵡ W(a) ⵡ W(a-1) ⵡ W(b) ⵡ W(b-1)
▪ W(a,b) = a-1W(a) ⵡ W(a-1)
▪ W(a,b) = b-1W(b) ⵡ W(b-1)

If R(a,b) is the free group, an orbit of a point p on S2 = { ρ(p) | ρ ∈ R(a,b)}, then

▪ S2-D = R(a,b)C = C ⵡ R(a)C ⵡ R(a-1)C ⵡ R(b)C ⵡ R(b-1)C
▪ S2-D =  A-1(R(a)C) ⵡ R(a-1)C
▪ S2-D =  B-1(R(b)C) ⵡ R(b-1)C

where C is the choice set

32

The Hausdorff Paradox
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