VWSIM: A Circuit
Simulator

Warren A. Hunt, Jr., Vivek Ramanathan, and
J Strother Moore

May 26, 2022

The University of Texas at Austin and ForrestHunt, Inc.
{hunt,vivek, moore}@forresthunt.com ACL2 Waorkshop 2022

Faster, energy-efficient computing

e (an we build faster, more energy-efficient computers?

e Approach: Rapid Single Flux Quantum (RSFQ) circuits

Co
X J4 - /\ J\ j\
v v v
“1” “077
Out D A

.

Voltage

K2
Out
v

RSFQ properties

%@

High-speed Low-enerqy
Increases speed Reduces energy
by ~100x consumption by

~10-20x

e

Very Cold

Operates at
~4 Kelvin

Circuit development workflow

g Layout & Fabrication\

Design 5 f
- /

- ™

Simulation = |

—0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 09 1
\ {ime (seconds) 410*"‘/

Why build a simulator in ACL27?

Understand the mathematics of RSFQ circuits (JJs)
Understand how existing circuit simulators work

Program simulator to perform collections of simulations
Pause, save, and restart simulations

Develop a formal semantics for RSFQ circuits

Develop an adequate model for the behavior of RSFQ circuits
Prove termination and guards to ensure absence of
memory-reference errors

No ok wh

What VWSIM produces

e VWSIM simulates a circuit over a time interval given a start
time, time-step size, and stop time
e The values that can be produced for each time step are:
1. Voltages of wires (with respect to a reference node)
2. Currents through devices
3. Phases of wires (with respect to a reference node)

G
vsl R, vel | |
+ VY) |
(($TIMES$ 0.00 0.20 0.40 0.60 ©0.80 1.00 1.20 1.40 1.60 1.80)
(I-C1 0.00 0.91 0.74 0.61 0.50 0.41 0.33 0.27 0.22 0.18) A vl
(vct 0.00 0.09 0.26 0.39 0.50 0.59 0.67 0.73 0.78 0.82))

How VWSIM works

VWSIM netlist Parse Input Create
. : Sort and :

SPICE .cir file into Flatten Modules Symbolic
Tisp file VWSIM Modules e d Ax=b

Simulation
Loop

Increment time)
with time-step amount

time >= end time?

Evaluate Symbolic|) -
Aandb Solve Ax=b

Record new

simulation values
Process and save results L

l Yes

How VWSIM works

VWSIM I}etlist Parse Input Soft and Create
SPICE .cir file |— into Symbolic
lisp file VWSIM Modules |~ Loauen Modules |17y
' ((rc-module Simulation
nil Loop
; Name type wires branch value
(vl v (vs1 gnd) (i-v1) ((@if Increment time |
($time$< ’1/5) ’0 ’1))) with time-step amount
(r1 r (vs1 vec1) (i-r1) (1))
(el ¢ (vel gnd) (i-c1) (°1))))))

vsl A RAIA vel
+
A vl

g;zd

time >= end time?

Evaluate Symbolic
Aandb

Process and save results

==

Record new
simulation values

L

How VWSIM works

VWSIM netlist
SPICE .cir file
lisp file

“((v1 v (VS1 GND)

(I-v1)

((IF ($TIMES$< “1/5) ‘@ “1)))

Parse Input
into
VWSIM Modules

Sort and
Flatten Modules

Create
Symbolic

(R1T R (vS1 VvC1) (I-R1) (1))
(C1 C (vC1 GND) (I-C1) (‘1))

Ax=b

Simulation
Loop

Increment time

Ry

vsl AA A vel
+

A vl

gnd

with time-step amount

time >= end time?

Evaluate Symbolic
Aandb

Process and save results

==

Record new
simulation values

L

How VWSIM works

VWSIM netlist Parse Input r——" Create
SPICE .cir file | into - ‘I’lMa“ i Symbolic
lisp file VWSIM Modules aten ocues Ax=b
“C:A (2. 1) Simulation
((1 . (Fo- (F/ HN (F* 2 <1)))) /[:L":OP
(3. 1))
(@ . “1) (2. F-1/X “1) Increment time |
(3 . (FO- (F-1/X “1)))) with time-step amount
(1. “1) (2. (Fo- (F-1/X “1)))
(3 . (F-1/X 1))
time >= end time?
“(:B (IF ($TIME$< “1/5) ‘0 1) (e ~= enc iime
(F+ (F- VC1 GND)
(Fx (F/ HN (Fx ‘2 “1)) I-C1))
‘0 Process and save results

¢0)

G
vsl Ry vel | |
+ A [
A vl
g:zd

Evaluate Symbolic
Aandb

==

Record new
simulation values

L |

How VWSIM works

G
vsl Ry vel | |
+ A [
A vl
g;d

Evaluate Symbolic
Aandb

VWSIM netlist Parse Input r——" Create
SPICE .cir file | into _ (:1 Ma“ i Symbolic
lisp file VWSIM Modules aten ocues Ax=b
“C:A (2. 1) Simulation
((1 . (Fo- (F/ HN (F* 2 <1)))) /[:L":OP
(3. ‘1))
(@ . “1) (2. F-1/X “1) Increment time |
(3 . (Fo- (F-1/X “1)))) with time-step amount |
(1. 1) (2. (Fo- (F-1/X “1)))
(3 . (F-1/X 1))
time >= end time?
“(:B (IF ($TIME$< “1/5) ‘0 1) (e ~= enc iime
(F+ (F- VC1 GND)
(Fx (F/ HN (Fx ‘2 “1)) I-C1))
‘0 Process and save results

¢0)

==

Record new
simulation values

L |

Running VWSIM

(vwsim <input> See the paper and README for more
:sim-type <sim-type> details about each of these options
:equations <equations>
:spice-print <spice-print>
:global-nodes <global-nodes>
:time-step <time-step>
:time-stop <time-stop>
:time-start <time-start>
:output-file <output-file>
:concat-char <concat-char>
:save-sim <save-sim>
:save-sim-shortp <save-sim-shortp>
:load-sim <load-sim>
:save-var <save-var>
:return-records <return-records>

Whaot have we proved?

1. Termination
2. Hundreds of guard proofs

a. We are currently working on guard verification of the
Ax=Db solver

3. Some correctness properties

(defthm vw-eval-same-for-vw-eval-fold
(implies (and (vw-eval-termp term)
(symbol-rational-list-alistp r)
(symbol-rational-list-alistp r-subset)
(record-subsetp r-subset r))
(equal (vw-eval (vw-eval-fold term r-subset) r)
(vw-eval term r))))

VWSIM optimizations

e (Our first simulator was very slow (barely able to simulate a
circuit with more than 10 circuit devices).

O
O

List-of-lists matrix representation and operations
Simulation results stored in list-of-lists format

e We have implemented the following optimizations:

O

O O O O

Floating-point simulation

Sparse matrix representation
Array-based, sparse matrix solver
STOBJs for fast lookup and storage
Fast symbolic term evaluator

Floating-point
simulation

e ACL2 does not currently support floating-point arithmetic
e We employ a trick to ensure the simulator can be defined in

ACL2: (defun nump (x)

(declare (xargs :guard t))
(and (acl2-numberp x)
(zerop (imagpart x))))

e nump IS equivalent to rationalp in the logic, but
recognizes floating-point numbers in raw Lisp

e VWSIM exploits Common Lisp support for fast floating-point
operations.

Exomple circuit and
netlist

“D" latch circuit

To

Out

“D" latch VWSIM Netlist

(D_LATCH (D C OUT GND)
((LY L (NET@2 OUT)
(LY)
('1/500000000000))
(XJ2 DAMP_JJ (NET@2 GND))
(XJ4 DAMP_JJ (C NET@2))
(LL L (NET@1 NET@2)
(LL)
('3/250000000000))
(XBIAS1 BIAS (NET@1 GND))
(XJ1 DAMP_JJ (NET@1 GND))
(XJ3 DAMP_JJ (D NET@1))))

Example circuit

simulation

s I}
1 —cC
—— Out
0.8
3 0.6
‘D" latch circuit p 04
£ 02}
0
Ceo -0.2
T -01 0 01 02 03 04 05 06 07 08 09 1
'Ibias >< 4 time (seconds) 10710
J3
o ¢ YYY\ 4 Y'Y\ 1 % 1 fired
N X 12 fired
D Out g e X 13 fired
= 0 X T4 fired
>< Jl >< J2 E —— Latch full
S 06
&
— —— %‘) 0.4
£
8 02
Q
0 x X

—0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (seconds) .10710

What next?

e [evelopment has taken about 17 person-years
o Initial definition, proofs, optimizations

e Run and test the simulator on many, many more circuits
o Perform analysis on these circuits

e (uard verify the Ax=b solver

e Improve VWSIM execution speed (currently 20% of
state-of-the-art)

e Produce proofs of correctness for our RSFQ circuit designs

ACL2

Conclusion

The development of the VWSIM simulator

e improved our understanding of RSFQ circuits

e enabled us to programmably test and validate circuit designs
e invigorated work on floating-point use and reasoning in ACL2
e |s free-to-use and will be made available

Thanks!

CREDITS: This presentation template was created by
Slidesgo, including icons by Flaticon, infographics &
images by Freepik and illustrations by Stories

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
https://stories.freepik.com/?utm_source=slidesgo_template&utm_medium=referral-link&utm_campaign=slidesgo_contents_of_this_template&utm_term=stories_by_freepik&utm_content=stories

