HARDWARE/SOFTWARE CO-ASSURANCE
USING THE RUST PROGRAMMING LANGUAGE
AND ACLZ2

David S. Hardin

Applied Research and Technology
Collins Aerospace

2 "
5\”‘@ Collins Aerospace

DISCLAIMER

The views expressed are those of the authors and do not reflect the official
policy or position of the Defense Advanced Research Projects Agency (DARPA)

or the U.S. Government.

\\\\I// . DISTRIBUTION STATEMENT ‘A’. Approved for public release. © 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.
o Collins Aerospace

DARPA CASE

» The goal of the DARPA Cyber-Assured Systems Engineering (CASE) program is to “develop
the necessary design, analysis and verification tools to allow system engineers to design-in
cyber resiliency”

 Architecture models in the DARPA CASE program are expressed in the SAE standard
Architectural Analysis and Design Language (AADL)

« The CASE Cyber Requirements tools examine the AADL model for the system, identifying
potential cyber vulnerabilities

- The CASE user then identifies security-enhancing architectural transformations to be applied to

the model to address the vulnerabilities

+ Let’s say the need for an input well-formedness filter was identified:

- The CASE user adds the filter to the model, and specifies the high-level filter behavior,
e.g. using a regular expression

« The CASE tools then automatically synthesize the filter and produce a proof of filter
correctness all the way down to the binary level

 This filter is hosted on a high-integrity operating system, e.g. seL4

W y
g\"é Collins Aerospace

DISTRIBUTION STATEMENT ‘A’. Approved for public release. © 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserve

DARPA CASE: SIMPLE UAV USE CASE

S T T
*
recv_data RADIO I
4 I
“a send_data
status - ———
*
—~t 1 0nes NFDB
“1 - »
. I FPLN* . <=
am_response H) e e - - I nofly_zones |]
A nnssnon_commm:d filter_in hller_ou; recv_map ‘j map
I 5 NE S ot] .
am_request] (A ———— 1 request_nofly_zones R — |
] I -
4 position_status] SN B
a4 flight_plan flight_plan
1
gimbal_command
e ——————————— d
position_status =
4
- I
S —

S
(o e o e e e e e e e e e e

wPm*

[————————— -y

flight_plan

1
position_status
LA

]

I

]

I

" 1
; I
]

I

mission_window

I<
.

W y
= "¢ Collins Aerospace

© 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved

DISTRIBUTION STATEMENT ‘A’. Approved for public release.

HARDWARE/SOFTWARE CO-DESIGN AND CO-
ASSURANCE FOR DARPA CASE

* We desire to create CASE-style high-assurance architectural components
using hardware/software co-design/co-assurance techniques

- The CASE high-level Architectural Modeling approach supports both
hardware- and software-based realizations

- Being able to defer and/or change the allocation of functionality to
hardware or software is highly desirable

- Hardware provides greater tamper resistance, as well as higher
performance

* Thus, we have been investigating the use of High-Level Synthesis (HLS)
hardware/software co-design languages that also support formal
verification

\\\\I// . DISTRIBUTION STATEMENT ‘A’. Approved for public release. © 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.
e Collins Aerospace 5

HARDWARE/SOFTWARE CO-DESIGN/
CO-ASSURANCE TOOLCHAIN

(ASPIRATIONAL)

Runtime
Libraries
\ 4
Application _| Modern, High-
Logic ” Level » Object Code
J’ Language IDE
\ 4
Data Format | Verified - Hardware/
Specification > Synthesis o o e '.‘Td »| Software > RTL
Tools S Co-Design Tool
v
Protocol Theorem
Specification Prover » Proofs
A
Lemma
Libraries

\\\\I// . DISTRIBUTION STATEMENT ‘A’. Approved for public release. © 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserve
o Collins Aerospace

HARDWARE/SOFTWARE CO-SYNTHESIS FROM
AADL MODELS (KANSAS STATE UNIVERSITY)

Demo: Synthesize Hardware for CASE-generated filter

AADL Model:
[PFC_Sys_Impl_Instance* A
proc_sw
"""""""""""""" A 'l'""""""".'"""""""""'I 25
producer to_filter from_producer fikter to_consumer from_filter CORISEmes
. I i >
............................ 4 L ——, o o o
...mapped to ...mapped to ...mapped to
Linux software process Linux process with FPGA hardware driver Linux software process

to access hardware-based filter implementation

Note: The KSU team currently uses the Xilinx Vivado HLS tools to perform hardware synthesis

\\\\I// . DISTRIBUTION STATEMENT ‘A’. Approved for public release. © 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.
e Collins Aerospace 7

r_App

TESTING ON FPGA DEVELOPMENT BOARD

Consumer proc_sw_consumer App starting ...

Producer proc_ sw producer App starting ...

PFC_Sys Impl Instance proc_ sw producer: Sending [00, 0O, 0O, 0O, 0O, 00, 00, 00, 00, 3A,
00, 00]

Filter proc sw filter App starting ...

PFC_Sys_ Impl Instance proc_sw_filter: Payload approved - MissionData([00, 00, 00, 00, 00,
oo, oo, 00, 00, 37, 00, 001])

PFC Sys Impl Instance proc sw consumer: Received MissionData([00, 00, 00, 00, 00, 00, 0O,
00, 00, 3A, 00, 00])

PFC_Sys Impl Instance proc_ sw producer: Sending [00, 6F, 6F, 6F, 00, 00, 00, 00, 00, 33,
00, 00]

PFC_Sys_ Impl Instance proc_sw_filter: Payload rejected - MissionData([00, 6F, 6F, 6F, 00,
oo, oo, 00, 00, 3a, 00, 001])

\\\\I// . DISTRIBUTION STATEMENT ‘A’. Approved for public release. © 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.
o Collins Aerospace

THE RAC APPROACH TO HARDWARE/
SOFTWARE VERIFICATION

« The hardware/software verification approach we employ was
developed by David Russinoff and John O’Leary, while both
were at Intel

« The approach was initially based on SystemC, and was David M. Russinoff
called MASC Formal Verification
- Russinoff changed the source language from SystemC to of Floating-Point
Algorithmic C after he moved to Arm, made several Hardware Design

enhancements, and renamed the system RAC (Restricted AMathematical Approach
Algorithmic C) Second Edition e

* RAC is extensively documented in Russinoff’'s book, Formal "‘;
Verification of Floating-Point Hardware Design: A Mathematical '
Approach, wherein RAC is applied to the verification of realistic)
Arm floating-point designs

* RAC, and the verifications described in the book, are all
available in the standard ACL2 theorem prover distribution

\\\\I// . DISTRIBUTION STATEMENT ‘A’. Approved for public release. © 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.
e Collins Aerospace 9

ALGORITHMIC C

* The Algorithmic C datatypes “provide a basis for writing bit-accurate algorithms to
be synthesized into hardware”

* Example use:
- typedef ac _int<112,false> uill2;

declares an unsigned 112-bit type used in floating-point hardware datapaths

» Supported by Mentor hardware synthesis tools, e.g. Catapult; for details, see
https://hlslibs.org

+ Restricted Algorithmic C (RAC) further restricts Algorithmic C to facilitate proof;
see Chapter 15 of Russinoff’s book for details

* NB: We use cpp macros to support either Algorithmic C or Xilinx Vivado HLS in
hardware synthesis

W y
g\"é Collins Aerospace

DISTRIBUTION STATEMENT ‘A’. Approved for public release. © 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserve

REALIZING THE H/W-S/W CO-ASSURANCE VISION USING
RUST

* Recently, we have begun work to realize the hardware/software co-
design co-assurance toolchain vision by supporting a Rust language
subset called Restricted Algorithmic Rust, or RAR

* Rust has several assurance advantages over C/C++, including:
* Improved type safety
* Vastly improved memory safety
* A “single-owner” rule for memory references (similar to stobjs)
* No arbitrary pointer arithmetic
e ...in short, the sources of 80% of C/C++ security flaws are
eliminated outright!

 Basic Rust syntax is familiar to C/C++ developers, easing the transition

* The Rust compiler produces efficient, and importantly, energy-efficient
code, which makes Rust a favorite for sustainable computing

W y
g\”é Collins Aerospace

DISTRIBUTION STATEMENT ‘A’. Approved for public release. © 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserve

RAR EXAMPLES DEVELOPED TO DATE

A suite of array-backed algebraic data types, previously implemented
in RAC

- Stack, Singly-linked list, Doubly-linked list, Circular Queue,
Deque, etc.

A significant subset of the Monocypher modern cryptography suite,
including XChacha20 and Poly1305 (RFC 8439) encryption/
decryption, Blake2b hashing, and X25519 public key cryptography

* A DFA-based JSON lexer, coupled with an LL(1) JSON parser

« The JSON parser has also been implemented using Greibach
Normal Form

W y
g\”é Collins Aerospace

RESTRICTED ALGORITHMIC C TOOLCHAIN

Algorithmic “Design “Verification Lemmas
C Header e Side”
#include
RAC Source ,| RAC-to-ACL2 R T:;c:)l;zm
Code Translator Prover
i Hardware AR
C++ Compiler Design Tools (.cert files)
i . Synthesis,
S|mul_?tlon Al Simulation, Test,
est -
Equivalence
Checking

\\\\I// . DISTRIBUTION STATEMENT ‘A’. Approved for public release. © 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.
e Collins Aerospace 13

RESTRICTED ALGORITHMIC RUST TOOLCHAIN

Algorlthmlc “Design “Verification . Lemmas
C Header S’ Side”
#include
RAR Source : Plexi .| RAC Source ,| RAC-to-ACL2 R T:;c:;zm
Code Transpiler Code Translator Prover
_ Hardware Proofs
C++ Compiler Design Tools (.cert files)
. . Synthesis,
S EIET Ee Simulation, Test,
Test .
Equivalence
Checking

\\\\I// . DISTRIBUTION STATEMENT ‘A’. Approved for public release. © 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.
o Collins Aerospace 14

THE PLEXI RAR-TO-RAC TRANSPILER

- Based on the open source plex parser and lexer generator
tool, written in Rust

* Translates RAR code to RAC code one line at a time

» Rapid prototyping principles used to produce a tool that
works “well enough”

- Future work will investigate replacing this tool with a
fully-verified transpiler

\\\I/ TTTTTTTTTTTTTTTTTTTTT ‘A’. Approved for public release. © 2022 Collins Aerospace , a Raytheon Technologies company. . All rights reserved .

gné Collins Aerospace

EXAMPLE: ARRAY-BASED SET

used_head free_head used_head free_head

1 2 1 0

\ [/

anext anext
510|345 2151345
avals avals
22133 | X | X[X X133 X| X[X
(a) Arrayset with contents {33, 22}, size =5 (b) After delete of element 22

W y
g\”é Collins Aerospace

DISTRIBUTION STATEMENT ‘A’. Approved for public release. © 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserve

RAR EXAMPLE: ARRAY-BASED SET

const ARR SZ: uint = 256;
[derive (Copy, Clone)]

struct Arrayset {
anext: [usize; ARR SZ],
avals: [i164; ARR SZ],
free head: usize,
used head: usize,

}

W y
g\"é Collins Aerospace

© 2020 Collins Aerospace, a Raytheon Technologies co

mpany. All rights reserve

d.

17

RAR EXAMPLE: ARRAY-BASED SET (CONT'D.)

fn aset _add(val: i64, aset: mut Arrayset) -> Arrayset ({
let curr_index: usize = aset.free_head;
if (curr_index >= ARR SZ) ({
return aset; // Full
} else {
if ((aset.used head < ARR SZ) && aset_is element(val, aset)) {
return aset;

} else {
aset.free head = aset.anext[aset.free head];
aset.avals[curr index] = val;
aset.anext[curr index] = aset.used head;

aset.used_head = curr_index;
return aset;

\1% .
% CO“Ins Aerospace - © 2020 Collins Aerospace, a Raytheon Technologies company. All rights reserved. 18

TRANSLATION TO ACLZ2

(DEFUND ASET ADD (VAL ASET)
(LET ((CURR _INDEX (AG ’'FREE HEAD ASET)))
(IF1 (LOG>= CURR INDEX (ARR SZ))
ASET
(IF1 (LOGAND1 (LOG< (AG 'USED HEAD ASET) (ARR SZ))
(ASET IS ELEMENT VAL ASET))
ASET
(LET* ((ASET (AS ’'FREE_ HEAD
(AG (AG ’FREE HEAD ASET) (AG ’ANEXT ASET))
ASET))
(ASET (AS ’'AVALS
(AS CURR_INDEX VAL (AG ’'AVALS ASET))
ASET))
(ASET (AS ’ANEXT
(AS CURR _INDEX (AG ’'USED HEAD ASET)
(AG ’ANEXT ASET))
ASET)))
(AS 'USED HEAD CURR_INDEX ASET))))))

\1% .
% CO“Ins Aerospace - © 2020 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

19

EXAMPLE RAR CORRECTNESS THEOREMS

(defthm as-anext-preseves-arraysetp
(implies
(and (arraysetp aset)
(array-of-u64p v)
(arraysetp (as 'anext v aset))))

(defthm aset add-works
(implies
(and (good-statep aset)
(integerp val)
(< (aset_len aset) (arr_sz)))

(= (aset_is element val (aset _add val aset)) 1)))

W y
g\"é Collins Aerospace

© 2020 Collins Aerospace, a Raytheon Technologies co

mpany. All rights reserve

d.

20

CONCLUSION AND FUTURE WORK

* We have detailed a method and toolchain for the creation of formally verified
critical system components developed for the DARPA CASE program

* We have demonstrated how this toolchain can be used to implement
security-enhancing transformations on system architectures specified in
AADL, with automatically synthesized and verified implementations

» We have also described methods and tools for enhancing the safety and
security of critical systems using a hardware/software co-design/co-assurance
approach using the Rust programming language

 Our efforts stand on the broad shoulders of the great Restricted
Algorithmic C work

* In future work, we will continue to enhance our verified synthesis tools for
Restricted Algorithmic Rust, focusing on:

» Enhanced proof automation via improved RAR/RAC ACL2 books
* Enhanced integration with KSU hardware synthesis effort
* Improvements to RAR-to-RAC transpiler

\\\\I// . DISTRIBUTION STATEMENT ‘A’. Approved for public release. © 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.
e Collins Aerospace 21

