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DISCLAIMER

The views expressed are those of the authors and do not reflect the official
policy or position of the Defense Advanced Research Projects Agency (DARPA)

or the U.S. Government.
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DARPA CASE

» The goal of the DARPA Cyber-Assured Systems Engineering (CASE) program is to “develop
the necessary design, analysis and verification tools to allow system engineers to design-in
cyber resiliency”

 Architecture models in the DARPA CASE program are expressed in the SAE standard
Architectural Analysis and Design Language (AADL)

« The CASE Cyber Requirements tools examine the AADL model for the system, identifying
potential cyber vulnerabilities

- The CASE user then identifies security-enhancing architectural transformations to be applied to

the model to address the vulnerabilities

+ Let’s say the need for an input well-formedness filter was identified:

- The CASE user adds the filter to the model, and specifies the high-level filter behavior,
e.g. using a regular expression

« The CASE tools then automatically synthesize the filter and produce a proof of filter
correctness all the way down to the binary level

 This filter is hosted on a high-integrity operating system, e.g. seL4
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DARPA CASE: SIMPLE UAV USE CASE
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HARDWARE/SOFTWARE CO-DESIGN AND CO-
ASSURANCE FOR DARPA CASE

* We desire to create CASE-style high-assurance architectural components
using hardware/software co-design/co-assurance techniques

- The CASE high-level Architectural Modeling approach supports both
hardware- and software-based realizations

- Being able to defer and/or change the allocation of functionality to
hardware or software is highly desirable

- Hardware provides greater tamper resistance, as well as higher
performance

* Thus, we have been investigating the use of High-Level Synthesis (HLS)
hardware/software co-design languages that also support formal
verification
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HARDWARE/SOFTWARE CO-DESIGN/
CO-ASSURANCE TOOLCHAIN
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HARDWARE/SOFTWARE CO-SYNTHESIS FROM
AADL MODELS (KANSAS STATE UNIVERSITY)

Demo: Synthesize Hardware for CASE-generated filter

AADL Model:
[ PFC_Sys_Impl_Instance* A
proc_sw
"""""""""""""" A 'l'""""""".'"""""""""'I 25
producer to_filter from_producer fikter to_consumer from_filter CORISEmes
. I i >
............................ 4 L ——, o o o
...mapped to ...mapped to ...mapped to
Linux software process Linux process with FPGA hardware driver Linux software process

to access hardware-based filter implementation

Note: The KSU team currently uses the Xilinx Vivado HLS tools to perform hardware synthesis
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r_App

TESTING ON FPGA DEVELOPMENT BOARD

Consumer proc_sw_consumer App starting ...

Producer proc_ sw producer App starting ...

PFC_Sys Impl Instance proc_ sw producer: Sending [00, 0O, 0O, 0O, 0O, 00, 00, 00, 00, 3A,
00, 00]

Filter proc sw filter App starting ...

PFC_Sys_ Impl Instance proc_sw_filter: Payload approved - MissionData([00, 00, 00, 00, 00,
oo, oo, 00, 00, 37, 00, 001])

PFC Sys Impl Instance proc sw consumer: Received MissionData([00, 00, 00, 00, 00, 00, 0O,
00, 00, 3A, 00, 00])

PFC_Sys Impl Instance proc_ sw producer: Sending [00, 6F, 6F, 6F, 00, 00, 00, 00, 00, 33,
00, 00]

PFC_Sys_ Impl Instance proc_sw_filter: Payload rejected - MissionData([00, 6F, 6F, 6F, 00,
oo, oo, 00, 00, 3a, 00, 001])
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THE RAC APPROACH TO HARDWARE/
SOFTWARE VERIFICATION

« The hardware/software verification approach we employ was
developed by David Russinoff and John O’Leary, while both
were at Intel

« The approach was initially based on SystemC, and was David M. Russinoff
called MASC Formal Verification
- Russinoff changed the source language from SystemC to of Floating-Point
Algorithmic C after he moved to Arm, made several Hardware Design

enhancements, and renamed the system RAC (Restricted AMathematical Approach
Algorithmic C) Second Edition e

* RAC is extensively documented in Russinoff’'s book, Formal "‘;
Verification of Floating-Point Hardware Design: A Mathematical '
Approach, wherein RAC is applied to the verification of realistic )
Arm floating-point designs

* RAC, and the verifications described in the book, are all
available in the standard ACL2 theorem prover distribution
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ALGORITHMIC C

* The Algorithmic C datatypes “provide a basis for writing bit-accurate algorithms to
be synthesized into hardware”

* Example use:
- typedef ac _int<112,false> uill2;

declares an unsigned 112-bit type used in floating-point hardware datapaths

» Supported by Mentor hardware synthesis tools, e.g. Catapult; for details, see
https://hlslibs.org

+ Restricted Algorithmic C (RAC) further restricts Algorithmic C to facilitate proof;
see Chapter 15 of Russinoff’s book for details

* NB: We use cpp macros to support either Algorithmic C or Xilinx Vivado HLS in
hardware synthesis
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REALIZING THE H/W-S/W CO-ASSURANCE VISION USING
RUST

* Recently, we have begun work to realize the hardware/software co-
design co-assurance toolchain vision by supporting a Rust language
subset called Restricted Algorithmic Rust, or RAR

* Rust has several assurance advantages over C/C++, including:
* Improved type safety
* Vastly improved memory safety
* A “single-owner” rule for memory references (similar to stobjs)
* No arbitrary pointer arithmetic
e ...in short, the sources of 80% of C/C++ security flaws are
eliminated outright!

 Basic Rust syntax is familiar to C/C++ developers, easing the transition

* The Rust compiler produces efficient, and importantly, energy-efficient
code, which makes Rust a favorite for sustainable computing

W y
g\”é Collins Aerospace

DISTRIBUTION STATEMENT ‘A’. Approved for public release. © 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserve



RAR EXAMPLES DEVELOPED TO DATE

A suite of array-backed algebraic data types, previously implemented
in RAC

- Stack, Singly-linked list, Doubly-linked list, Circular Queue,
Deque, etc.

A significant subset of the Monocypher modern cryptography suite,
including XChacha20 and Poly1305 (RFC 8439) encryption/
decryption, Blake2b hashing, and X25519 public key cryptography

* A DFA-based JSON lexer, coupled with an LL(1) JSON parser

« The JSON parser has also been implemented using Greibach
Normal Form
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RESTRICTED ALGORITHMIC C TOOLCHAIN
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RESTRICTED ALGORITHMIC RUST TOOLCHAIN
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THE PLEXI RAR-TO-RAC TRANSPILER

- Based on the open source plex parser and lexer generator
tool, written in Rust

* Translates RAR code to RAC code one line at a time

» Rapid prototyping principles used to produce a tool that
works “well enough”

- Future work will investigate replacing this tool with a
fully-verified transpiler
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EXAMPLE: ARRAY-BASED SET

used_head free_head used_head free_head

1 2 1 0

\ [/

anext anext
510|345 2151345
avals avals
22133 | X | X[ X X133 X| X[ X
(a) Arrayset with contents {33, 22}, size =5 (b) After delete of element 22
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RAR EXAMPLE: ARRAY-BASED SET

const ARR SZ: uint = 256;
# [derive (Copy, Clone)]

struct Arrayset {
anext: [usize; ARR SZ],
avals: [i164; ARR SZ],
free head: usize,
used head: usize,

}
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RAR EXAMPLE: ARRAY-BASED SET (CONT'D.)

fn aset _add(val: i64, aset: mut Arrayset) -> Arrayset ({
let curr_index: usize = aset.free_head;
if (curr_index >= ARR SZ) ({
return aset; // Full
} else {
if ((aset.used head < ARR SZ) && aset_is element(val, aset)) {
return aset;

} else {
aset.free head = aset.anext[aset.free head];
aset.avals[curr index] = val;
aset.anext[curr index] = aset.used head;

aset.used_head = curr_index;
return aset;
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TRANSLATION TO ACLZ2

(DEFUND ASET ADD (VAL ASET)
(LET ((CURR _INDEX (AG ’'FREE HEAD ASET)))
(IF1 (LOG>= CURR INDEX (ARR SZ))
ASET
(IF1 (LOGAND1 (LOG< (AG 'USED HEAD ASET) (ARR SZ))
(ASET IS ELEMENT VAL ASET))
ASET
(LET* ((ASET (AS ’'FREE_ HEAD
(AG (AG ’FREE HEAD ASET) (AG ’ANEXT ASET))
ASET))
(ASET (AS ’'AVALS
(AS CURR_INDEX VAL (AG ’'AVALS ASET))
ASET))
(ASET (AS ’ANEXT
(AS CURR _INDEX (AG ’'USED HEAD ASET)
(AG ’ANEXT ASET))
ASET)))
(AS 'USED HEAD CURR_INDEX ASET))))))

\1% .
% CO“Ins Aerospace - © 2020 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

19



EXAMPLE RAR CORRECTNESS THEOREMS

(defthm as-anext-preseves-arraysetp
(implies
(and (arraysetp aset)
(array-of-u64p v)
(arraysetp (as 'anext v aset))))

(defthm aset add-works
(implies
(and (good-statep aset)
(integerp val)
(< (aset_len aset) (arr_sz)))

(= (aset_is element val (aset _add val aset)) 1)))
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CONCLUSION AND FUTURE WORK

* We have detailed a method and toolchain for the creation of formally verified
critical system components developed for the DARPA CASE program

* We have demonstrated how this toolchain can be used to implement
security-enhancing transformations on system architectures specified in
AADL, with automatically synthesized and verified implementations

» We have also described methods and tools for enhancing the safety and
security of critical systems using a hardware/software co-design/co-assurance
approach using the Rust programming language

 Our efforts stand on the broad shoulders of the great Restricted
Algorithmic C work

* In future work, we will continue to enhance our verified synthesis tools for
Restricted Algorithmic Rust, focusing on:

» Enhanced proof automation via improved RAR/RAC ACL2 books
* Enhanced integration with KSU hardware synthesis effort
* Improvements to RAR-to-RAC transpiler
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