Modeling Asymptotic Complexity Using ACL2

ACL2 Workshop 2022

William D. Young
Department of Computer Science
University of Texas at Austin

Last updated: May 25, 2022 at 11:30

1 ACL2 Workshop 2022

Asymptotic Complexity

Asymptotic complexity: a systematic approach to characterizing
the limiting behavior of a function as its argument tends toward
infinity.

A collection of notations, collectively called Bachmann-Landau
notations allow characterizing the behavior of one function in
terms of another:

o O(g(n)) (Big-O): the set of functions asymptotically upper
bounded by g(n).
o Q(g(n)) (Big Omega): functions lower bounded by g(n).
o ©(g(n)) (Big Theta): functions upper and lower bounded by
g(n).
There are also corresponding “little” notations that provide strict
bounds.

2 ACL2 Workshop 2022

Most common is the big-O notation for estimating an upper bound
on the time or space complexity of an algorithm.

Definition: Let f and g be functions f,g: N — RT. We
say that f(n) = O(g(n)) if there exist positive integers ¢
and ng such that for every integer n > ng,

f(n) < c-g(n).

When f(n) = O(g(n)) we say that g(n) is an asymptotic upper
bound for f(n)).

3 ACL2 Workshop 2022

The Goal of this Research

The goal of this research: formalize and prove Big-O properties of
algorithms using ACL2.

o How to characterize the algorithms;

o How to express the higher-order notion of Big-O in ACL2;

@ How to count “steps” in the execution;

@ How to prove that the number of steps is O(g(n)), for some
g(n).

4 ACL2 Workshop 2022

The Language

We embed a simple imperative language in ACL2 via an
operational semantics.

Consists of:

o expression sublanguage: literals, variables, arithmetic and
logical expressions;

o statements: skip, assign, return, if-else, while, sequence.

5 ACL2 Workshop 2022

The Operational Semantics

The semantics is provided by an typical interpreter function:
(run stmt status vars steps count)

where:
o stmt: the statement to execute;

o status: the current state of the execution (only proceeds if
status is ’0K);

o vars: a variable alist;
o steps: a running count of the number of execution steps;
@ count: the clock argument to guarantee termination.

It returns a triple:

(status, vars, steps)

6 ACL2 Workshop 2022

Semantics

(defun run (stmt status vars steps count)
(if (not (okp status))
(mv status vars steps)
(if (zp count)
(mv ’timed-out vars steps)
(case
(operator stmt)

(while (mv-let (test-stat test-val test-steps)
(exeval (paraml stmt) t vars)
(if (not test-stat)
(run-error vars)

(if test-val
(mv-let (body-stat body-vars body-steps)

(run (param2 stmt) status vars
(+ 1 steps test-steps)
count)
(run stmt body-stat body-vars
body-steps
(1- count)))
(mv ’ok vars (+ 1 test-steps steps))))))

(otherwise (run-error vars))))))

7 ACL2 Workshop 2022

Binary Search: Python Version

def BinarySearch(key, lst):
low = 0
high = len(lst) - 1
while (high >= low):
mid = (low + high) // 2
if key == lst[mid]:
return mid
elif key < lst[mid]:
high = mid - 1
else:
low = mid + 1
return -1

8 ACL2 Workshop 2022

Binary Search: Our Version

Here's a hand translation of the Python Binary Search routine into
our simple iterative language:

(defun binarysearch (key 1lst)
‘(seqn (assign (var low) (1lit . 0))
(assign (var high) (- (lemn ,1st) (1it . 1)))
(while (<= (var low) (var high))
(seq (assign (var mid)
(// (+ (var low) (var high)) (1it . 2)))
(if-else (== ,key (ind (var mid) ,1st))
(return (var mid))
(if-else (< ,key (ind (var mid) ,1lst))
(assign (var high)
(- (var mid) (1it . 1)))
(assign (var low)
(+ (var mid) (it . 1)))))))
(return (1it . -1)))))

9 ACL2 Workshop 2022

Executing our Program

ACL2 !'>(run (binarysearch °’(lit . 4)
’(lit . (0123 4567)))
’0K nil 0 10)

(RETURNED ((LOW . 4)

(HIGH . 4)

(MID . 4)

(RESULT . 4))

77)

ACL2 !'>(run (binarysearch ’(var key) ’(var 1lst))
’0K ((key . 4) (st . (01357 9 10))) 0 10)

(RETURNED ((KEY . 4)

(LST 0 1 357 9 10)

(Low . 3)

(HIGH . 2)

(MID . 2)

(RESULT . -1))

91)

10 ACL2 Workshop 2022

Our Proof Approach

We prove two things simultaneously:

Q Functional correctness: the program actually computes the
correct result;

Q Asymptotic complexity: the program is a member of a
certain Big-O class.

11 ACL2 Workshop 2022

Functional Correctness

(defun recursiveBS-helper (key 1lst low mid high calls)
;; This performs a recursive binary search for key in
;5 lst[low..high]. It returns a 5-tuple (success low mid high calls).
;; We need all of those values to do the recursive proof.
(if (or (< high low) (not (nmatp low)) (not (integerp high)))
(mv nil low mid high calls)
(let ((newmid (floor (+ low high) 2)))
(if (equal key (nth newmid 1lst))
(mv t low newmid high calls)
(if (< key (nth newmid 1lst))
(recursiveBS-helper key lst low
newmid (1- newmid) (1+ calls))
(recursiveBS-helper key lst (1+ newmid)
newmid high (1+ calls)))))))

(defun recursiveBS (key lst)
(mv-let (success low mid high calls)
(recursiveBS-helper key 1lst 0 nil (1- (len 1st)) 0)
(declare (ignore low high calls))
(if success mid -1)))

12 ACL2 Workshop 2022

Relating the Iterative and Recursive Versions

As an example, if (member-equal keyval lstval), where
keyval and 1stval are values stored in the alist in appropriate
variables, then the following is true:

(equal (run (binarysearch key lst) ’ok vars O count)
(mv-let (success endlow endmid endhigh endcalls)
(recursiveBS-helper keyval lstval
0 nil (1- (len 1lstval)) 0)

(mv ’returned

(store ’result endmid

(store ’mid endmid
(store ’high endhigh
(store ’low endlow vars))))
(+ 25 (* 26 endcalls)))))

Notice this shows that the iterative and recursive versions are in
lock-step.

13 ACL2 Workshop 2022

A Simpler Recursive Version

We define a simpler recursive version of binary search, without the
local variables:

(defun recursiveBS2-helper (key lst low high)
(if (or (< high low)

(not (natp low))
(not (integerp high))
)

-1

(let ((newmid (floor (+ low high) 2)))

(if (equal key (nth newmid 1st))

newmid
(if (< key (nth newmid 1lst))
(recursiveBS2-helper key lst low (1- newmid))

(recursiveBS2-helper key 1lst (1+ newmid) high))))))

(defun recursiveBS2 (key lst)
(recursiveBS2-helper key lst 0 (1- (len 1st))))

14 ACL2 Workshop 2022

Two Values are Equivalent

We prove that the two recursive versions are equivalent:

(defthm recursiveBS-versions-equivalent
(implies (and (number-listp lst)
(acl2-numberp key))
(equal (recursiveBS key lst)
(recursiveBS2 key 1st))))

And that the simpler version actually searches:

(defthm recursiveBS2-searches
(implies (and (acl2-numberp key)
(number-listp 1lst)
(sorted 1lst))
(let ((index (recursiveBS2 key 1lst)))
(and (implies (member-equal key lst)
(equal (nth index 1lst) key))
(implies (not (member-equal key 1lst))
(equal index -1))))))

15 ACL2 Workshop 2022

Reminder: Definition of Big-O

Recall our earlier definition of Big-O:
Definition: Let f and g be functions f,g: N — R™. We

say that f(n) = O(g(n)) if there exist positive integers ¢
and ng such that for every integer n > np,

f(n) <c-g(n).

But this is higher order!

16 ACL2 Workshop 2022

Logarithmic Complexity

So instead of defining function-Big-0, we defined
function-logarithmic:

(defun log2 (n)
(if (zp n)
0
(1+ (log2 (floor n 2)))))

(defun-sk function-logarithmicl (program log-of c n0O vars count)
(forall (n)
(implies (and (equal n (len log-of))
(<= n0 n))

(mv-let (run-stat run-vars run-steps)
(run program ’ok vars O count)
(declare (ignore run-stat run-vars))
(and (<= 0 run-steps)

(<= run-steps (* ¢ (log2 n))))))))

(defun-sk function-logarithmic2 (program log-of vars count)
(exists (c n0)
(and (posp c)
(posp n0)
(function-logarithmicl program log-of ¢ n0O vars count))))

17 ACL2 Workshop 2022

Proving It's Logarithmic

This is the theorem that shows our iterative program is O(log,(n)):

(defthm binarysearch-logarithmic-lemma
(let ((keyval (lookup ’key vars))
(1stval (lookup ’lst vars)))
(implies
(and (acl2-numberp keyval)
(number-listp lstval)
(sorted lstval)
(integerp count)
(not (timed-outp
run-status (run (binarysearch ’(var key) ’(var 1lst))
’ok vars O count)))))
(function-logarithmic2 (binarysearch ’(var key) ’(var 1lst))
(lookup ’lst vars) vars count))))

| proved a similar theorem for linear search and some other simple
programs.

18 ACL2 Workshop 2022

Subtleties of the Approach

(]

Counting steps may be useful for other purposes.

(]

But, it's very sensitive to the way the program is written.

(]

Counting is at the source code level; maybe object code would
be better.

(7]

Object level programs could already be optimized.

[~]

The proofs are fragile and tedious.

It would be great to find a more robust and less labor intensive
methodology.

The hardest part was proving the equivalence of the iterative and
recursive versions of the program.

19 ACL2 Workshop 2022

