
ACL2 Workshop 2025

An ACL2s
Interface to Z3 
Andrew T. Walter, Panagiotis Manolios
Khoury College of Computer Science, Northeastern University

● Z3 is a Satisfiability Modulo Theories (SMT) solver
○ SMT: SAT over constraints in many-sorted FOL with equality wrt. theories
○ Decision procedures for several fragments, + support for undecidable

● SMT-LIB2: standardized S-expression input format

Z3 
ACL2 Workshop 2025

sat
(
 (define-fun b () Real
 0.0)
 (define-fun c () Int
 0)
 (define-fun a () Int
 10)
)

(declare-const a Int)
(declare-const b Real)
(declare-const c Int)
(assert (> a (+ b 2)))
(assert (= a (+ (* 2 c) 10)))
(assert (<= (+ c b) 1000))
(check-sat)
(get-model)

Why Z3 + ACL2? 
Z3 and ACL2 have different
strengths - can work
together synergistically!

ACL2 Workshop 2025

Demo 

ACL2 Workshop 2025

Related Work 
● UCLID/BAT + ACL2 (Manolios & Srinivasan, 2004, 2005…)

○ Hardware verification

● Yices + ACL2 (Srinivasan, 2007), Satlink (Davis & Swords, 2011), Smtlink (Peng
& Greenstreet, 2015)
○ Automatically convert ACL2 goals into SAT/SMT queries
○ Solver proves => ACL2 goal is a theorem (trust)
○ Solver disproves => counterexample
○ Soundness is important - trusting result of external tool + translation!
○ Yices + ACL2: QF_AUFLIA
○ Satlink: bit-blast Boolean formulae
○ Smtlink: linear and nonlinear arithmetic, user-defined data types

ACL2 Workshop 2025

ACL2s Systems Programming 
● Framework enabling the development of tools that use ACL2 as a black box

○ Gamified loop invariant discovery, proof checker, Python fuzzing…

● Our library adds Z3 to toolbox!
○ Framework for interfacing with reasoning tools, interacting with external

world

ACL2 Workshop 2025

Client

Client

Coordinator Supervisor

ACL2s

Systems
Programming

Z3

ACL2s

Systems
Programming

Z3

Lisp-Z3 Library 
● Goals: fast, flexible, exposes many features

○ Write constraints with SMT-LIB2 semantics

● Interface with Z3's C API
○ Fast, low overhead, high control
○ Engineering required to implement

● Written in Common Lisp
○ ASDF package
○ Accessible in ACL2 using defun-bridge

● Supports core SMT functionality (assert, check SAT, get model), plus:
○ Optimization, uninterpreted functions, user-defined sorts, quantifiers…
○ Incremental solving, solver configuration

ACL2 Workshop 2025

Usage 
;; Set up Z3. Only needs to happen once, before other code that uses Z3
(solver-init)
;; Declare variables x and y
(declare-const x Bool)
(declare-const y Int)
;; Assert a constraint over x and y
(z3-assert
 (and x (>= y 5)))
;; Check for satisfiability
(check-sat)
;; If satisfiable, get a satisfying assignment
(get-model)

#<Z3::MODEL
X -> true
Y -> 5
>

ACL2 Workshop 2025

Usage 
;; Set up Z3. Only needs to happen once, before other code that uses Z3
(solver-init)
;; Declare variables x and y and assert a constraint over them
(z3-assert (x :bool y :int)
 (and x (>= y 5)))
;; Check for satisfiability
(check-sat)
;; If satisfiable, get a satisfying assignment and translate it into a
;; form that is usable as Common Lisp let bindings
(get-model-as-assignment)

ACL2 Workshop 2025

((X T) (Y 5))

Implementation: Low-Level Interface 
● Use the Common Foreign Function Interface (CFFI) Common Lisp library
● Engineering effort: expose correct types and functions
● Can call Z3 C API functions, but verbose & requires memory management…

(let ((model (z3-solver-get-model ctx slv)))
 (loop for i below (z3-model-get-num-consts ctx model)
 for decl = (z3-model-get-const-decl ctx model i)
 for name = (z3-get-symbol-string ctx (z3-get-decl-name ctx decl))
 for value-ast = (z3-model-get-const-interp ctx model decl)
 ;; Here we assume the value is a numeral and get it as a string
 collect (list name (z3-get-numeral-string ctx value-ast))))

ACL2 Workshop 2025

Implementation: High-Level Interface 
● Build on top of low-level interface to make interaction user-friendly!

● Provide wrapper types for Z3 objects
○ Pretty-printing, automatic memory management

● Handle assertion stack: variables & constraints relative to stack level
○ Stack levels can be pushed/popped

● Translate S-expressions into Z3 ASTs

● Allow users to define sorts - enums, tuples

● Translate models into Common Lisp values

ACL2 Workshop 2025

Application: Sudoku 
● Sudoku: classic SMT problem
● Sudoku solver ~50 LOC using Lisp-Z3
● Straightforward to add pretty-printing
● Incremental solving is convenient here!

ACL2 Workshop 2025 ;; Turn an index into a Sudoku grid into the variable for that square's value
(defun idx-to-cell-var (idx)
 (intern (concatenate 'string "C" (write-to-string idx))))

;; We'll encode the sudoku grid in the simplest way possible, 81 integers
(defconstant +cell-vars+
 (loop for idx below 81 append (list (idx-to-cell-var idx) :int)))

;; We limit the integers to values between 1 and 9, inclusive
(defconstant cell-range-constraints
 (loop for idx below 81
 append `((<= 1 ,(idx-to-cell-var idx)) (>= 9 ,(idx-to-cell-var idx)))))

;; The values in each row must be distinct
(defconstant row-distinct-constraints
 (loop for row below 9 collect
 `(distinct ,@(loop for col below 9 collect (idx-to-cell-var (+ (* 9 row) col))))))

;; The values in each column must be distinct
(defconstant col-distinct-constraints
 (loop for col below 9 collect
 `(distinct ,@(loop for row below 9 collect (idx-to-cell-var (+ (* 9 row) col))))))

;; The values in each 3x3 box must be distinct
(defconstant box-distinct-constraints
 ;; indices of the top-left square of each box
 (loop for box-start in '(0 3 6 27 30 33 54 57 60)
 collect `(distinct
 ;; offsets of each square in a box from the top left square
 ,@(loop for box-offset in '(0 1 2 9 10 11 18 19 20)
 collect (idx-to-cell-var (+ box-start box-offset))))))

;; Set up the initial constraints on the grid
(defun init ()
 (solver-init)
 (z3-assert-fn +cell-vars+ (cons 'and cell-range-constraints))
 (z3-assert-fn +cell-vars+ (cons 'and row-distinct-constraints))
 (z3-assert-fn +cell-vars+ (cons 'and col-distinct-constraints))
 (z3-assert-fn +cell-vars+ (cons 'and box-distinct-constraints)))

;; This generates constraints based on a "starting grid".
(defun input-grid-constraints (grid)
 (loop for entry in grid for idx below 81
 when (not (equal entry '_)) collect `(= ,(idx-to-cell-var idx) ,entry)))

(defun solve-grid (input-grid)
 (solver-push)
 (let ((input-cstrs (input-grid-constraints input-grid)))
 (when input-cstrs (z3-assert-fn +cell-vars+ (cons 'and input-cstrs))))
 (let* ((sat-res (check-sat))
 (res (if (equal sat-res :sat) (get-model-as-assignment) sat-res)))
 (progn (solver-pop) res)))

ACL2 Workshop 2025

Demo 

Application: String Solving 
● String solving: constraint solving

○ Security analysis, program verification, …

● SeqSolve (Kumar & Manolios, 2021):
○ Uses Lisp-Z3 for LIA constraints
○ Leverages Z3's incremental solving
○ Written in ACL2s, uses Lisp-Z3

● Beat all other solvers at time of publishing
○ Solved more problems than any other solver
○ Faster than any other solver
○ Solved problems that no other solver could! Ex:

xab = ay

x = a
y = ab

A string equation over
variables x and y, with
constants a and b

One possible solution

ACL2 Workshop 2025 Ankit Kumar and Panagiotis Manolios.
"Mathematical Programming Modulo
Strings." FMCAD 2021.

xcyczvycya = yacwazvbux

Application: Wi-Fi Fuzzing 
● Work with Greve and Manolios, 2022:

○ Generate frames for hardware-in-the-loop fuzzing
○ Model 802.11 Wi-Fi frames using ACL2s types

● Frames are complicated: many constraints on size + contents

● Hard to generate frames with good distribution of sizes

● Use of ACL2s + Lisp-Z3 to generate frames w/ a variety of sizes
○ Faster than Z3 or ACL2s alone!

ACL2 Workshop 2025 Andrew T. Walter, David A. Greve and
Panagiotis Manolios. "Enumerative Data
Types with Constraints." FMCAD 2022.

ACL2 Workshop 2025

Conclusion & Future Work 
● Lisp-Z3: a library for using Z3 as a service from Common Lisp

○ Integrated with ACL2s systems programming framework
○ Shown useful in: string solving, fuzzing…
○ Freely available in the ACL2 books

● Future Work
○ Support more Z3/SMT-LIB2 features
○ Integration between Z3 sorts and ACL2s defdata types
○ Backend support for other SMT solvers (e.g., CVC5)

● We'd love for others to use Lisp-Z3!
○ If you try it out, please send us your feedback and feature requests!

ACL2 Workshop 2025

Any questions?  
Ask away!  Think of something later? Wanna

talk about using Lisp-Z3? Feel
free to contact me at
walter.a@northeastern.edu!

ACL2 Workshop 2025

https://github.com/acl2/acl2/tree/master/books/workshops/2025/walter-manolios

https://github.com/acl2/acl2/tree/master/books/workshops/2025/walter-manolios

Thank you! 

Thanks to the anonymous reviewers of our paper, Dave Greve & the folks
at Collins we worked with, Ankit Kumar, and the students in the Fall 2021
and 2022 sections of CS4820 at Northeastern University

