Cellular Automata Surviving k Steps

Zeke Medley & Panagiotis Manolios
Northeastern University

May 2025



Surviving k Steps

1. Problem posed by Wolfram in 2024.

Lwritings.stephenwolfram.com posts dated May 3, 2024; August 22, 2024;
December 5, 2024; February 3, 2025.



Surviving k Steps

1. Problem posed by Wolfram in 2024.
2. Explored in several essays. !

What’s Really Going On in Machine
Learning? Some Minimal Models

August 22, 2024

I‘ ﬁ & {R/,g?gf.

writings.stephenwolfram.com posts dated May 3, 2024; August 22, 2024;
December 5, 2024; February 3, 2025.



Surviving k Steps

1. Problem posed by Wolfram in 2024.

2. Explored in several essays. !

What’s Really Going On in Machine
Learning? Some Minimal Models

August 22, 2024

EEEE.

ii :

3. Wolfram takes an empirical view, we take a mathematical one.

writings.stephenwolfram.com posts dated May 3, 2024; August 22, 2024;
December 5, 2024; February 3, 2025.



Surviving k Steps

1. Problem posed by Wolfram in 2024.

2. Explored in several essays. !

What’s Really Going On in Machine
Learning? Some Minimal Models

August 22, 2024

A i & &(“f?éi-

i

3. Wolfram takes an empirical view, we take a mathematical one.
4. QOur work: > 99% solved.

Lwritings.stephenwolfram.com posts dated May 3, 2024; August 22, 2024;
December 5, 2024; February 3, 2025.



Elementary Cellular Automata

1. Functions from {W,0}° — {W O}



Elementary Cellular Automata

1. Functions from {W,0}° — {W O}
2. Let \; be the ith one (“Wolfram Code” enumeration).



Elementary Cellular Automata

1. Functions from {W,0}° — {W O}
2. Let \; be the ith one (“Wolfram Code” enumeration).
3. For example, A4's truth table

A4

pupinpian e Rl s SR

M(EEE) =0, \(O,m0) =,




Growing A4 (visually)

CEEN NN

A4

RO




Growing A4 (visually)

$0) —
LU+1) —

A4
= wn w o o R (D)




Growing A4 (visually)

0 = ]
KU1 —

A4
= s o ()




Growing A4 (visually)

$0) —
LU+1) —

A4
= wm w me() R p




Growing A4 (visually)

L0 —
LU+ —

A4
) o ) e R




Growing A4 (visually)

$0) —
LU+1) —

A4
= wn w o o R (D)




Growing A4 (visually)

$0) —
LU+1) —

A4

RO




Growing A4

jth state xU) e {0}, next state xU+1)

D (xV) ) 0)

i—1 mod w’ i 7Xi+1 mod w)



Inhomogeneous Cellular Automata

1. Choose what \; to use where, instead of using the same \;
everywhere.



Inhomogeneous Cellular Automata

1. Choose what \; to use where, instead of using the same \;

everywhere.
2. Formally, use a rule array a: N?> — {\;i,..., \i.},
G+1) _ oer (W) G0 0
Xi = a(i,J) (21 mod ws i+ Xi1 mod w)



Growing Inhomogeneous Cellular Automata (visually)

xU) =
U+ —

a(1,j) = Ao

A4

EERR O

A110

=y e (@




Inhomogeneous Cellular Automata

1. Choose what \; to use where, instead of using the same A;
everywhere.

2. Formally, use a rule array a: N?> — {\;i,..., \i.},

H 1 P j j j
X,-(J+ ) = a(’v])(Xi(J—)l mod w> Xi(J)’ XI'(.—]&-)l mod W)

3. What can we synthesize with appropriate choice of a?



Figure: An inhomogeneous cellular automata using A126 and Aoos.



Inhomogeneous Cellular Automata

1. Inhomogeneous Cellular Automata are very expressive?.

2 A survey of cellular automata: types, dynamics, non-uniformity and
applications, Kamalika Bhattacharjee et. al.



Inhomogeneous Cellular Automata

1. Inhomogeneous Cellular Automata are very expressive?.

2. Our work looks at the Survive-k-Steps problem posed by
Wolfram in 2024.

What’s Really Going On in Machine
Learning? Some Minimal Models

August 22, 2024

B
IR T

(Y

2 A survey of cellular automata: types, dynamics, non-uniformity and
applications, Kamalika Bhattacharjee et. al.



Survive-5-Steps (visually)

m

%% A110

5 steps <

A4

puplen il Sl s REE S E

A110

gl R "mlaSils it R alnay




Survive-5-Steps (visually)

( m
Y
5 steps < ////;///’/A At1o
\

This proves A4, A119 can Survive-5-Steps, but which k are solvable
in general?



Survive-k-Steps

If there exists a rule array using only A;, \; such that,



Survive-k-Steps

If there exists a rule array using only A;, \; such that,

1. x(© has exactly one H,



Survive-k-Steps

If there exists a rule array using only A;, \; such that,
1. x(© has exactly one H,
2. Vi< k,me x(),



Survive-k-Steps

If there exists a rule array using only A;, \; such that,
1. x(© has exactly one H,
2. Vi< k,me x(),
3. Vi> k,m ¢ x()



Survive-k-Steps

If there exists a rule array using only A;, \; such that,
1. x(© has exactly one H,
2. Vi< k,me x(),
3. Vi> k,m ¢ x()

then, \; and \; can solve Survive-k-Steps .



Research Question

For any i, j, is the set
{k | Ai, Aj solve Survive-k-Steps}

finite?



Evidence of Structure

i1

i

4 4 ;VV
i

gk g

oF
¥
¥
i

:\1\\

il

;'VV
F

i il
r FrE

A
b

R
i I

Figure: B at position (7, /) means Survive-50-Steps on a width 31 board
is possible with \; and A;. Top-left is (0, 0), bottom right is (255, 255).



The B-to-L] Transition

To Survive-k-Steps A\;,\; need to “die”.

Y
Y, )0

“die”, i.e. IxO) Mex AW ¢ x(D),



The B-to-L] Transition

To Survive-k-Steps A\;,\; need to “die”.

Y
Y, )0

“die”, i.e. IxO) M e x A B ¢ x(D e the W-to-0 Transition.



When is l-to-[] impossible?

Figure: B at position (/,j) means \;, A; cannot do the B-to-[J transition
on a width 31 board. Top-left is (0,0), bottom right is (255, 255).



When is l-to-[] impossible?

Let's prove it.



When is l-to-[] impossible?
Let's prove it.

1. M e x(O if x contains a pattern with a B. For example,
x= [N

contains the pattern HC L



When is l-to-[] impossible?
Let's prove it.

1. M e x(O if x contains a pattern with a B. For example,
x= [N

contains the pattern HC L
2. B-to-U is possible if A\; or \; output [J on that pattern.



When is l-to-[] impossible?

Let's prove it.
1. M e x(O if x contains a pattern with a B. For example,

x=[HEN

contains the pattern HC L
2. B-to-U is possible if A\; or \; output [J on that pattern.

3. For example,

A254

TETrYY TSR

A255

Y ST

cannot transition from W-to-[J.




Reasoning about patterns

1. We need a way to reason about patterns in x € {l, OJ}".



Reasoning about patterns

1. We need a way to reason about patterns in x € {l, OJ}".
2. Consider a two-cell sliding window starting at Hl.

B

[0 next

/

W next



Reasoning about patterns

1. We need a way to reason about patterns in x € {l,J}".

2. Consider a two-cell sliding window starting at HlL

[



Reasoning about patterns

1. We need a way to reason about patterns in x € {l, O}".
2. Consider a two-cell sliding window starting at Il

W] — O next—>[1]

L
\

[



Reasoning about patterns

1. We need a way to reason about patterns in x € {l, O}".
2. Consider a two-cell sliding window starting at Il

N —aT—[1]



Reasoning about patterns

1. We need a way to reason about patterns in x € {l, OJ}".

2. Consider a two-cell sliding window.

o

This is a De Bruijn graph.

EED



Cycle <> State

There is a bijection between {l, [0} (with wrapping) and cycles
in this graph.



Cycle <> State

There is a bijection between {l, [0} (with wrapping) and cycles
in this graph. For example,



Cycle <> State

There is a bijection between {l, [0} (with wrapping) and cycles
in this graph. For example,

@



Cycle <> State

There is a bijection between {l, [0} (with wrapping) and cycles
in this graph. For example,

@/ l]—>[g>



Cycle <> State

There is a bijection between {M, [} (with wrapping) and cycles
in this graph. For example,

D/@ o



Cycle <> State

There is a bijection between {M, [} (with wrapping) and cycles
in this graph. For example,

e



Cycle <> State

There is a bijection between {M, [} (with wrapping) and cycles
in this graph. For example,



Cycle <> State

There is a bijection between {M, [} (with wrapping) and cycles
in this graph. For example,

El/ “\ Eé)

B

./
S



Cycle <> State

There is a bijection between {M, [} (with wrapping) and cycles
in this graph. For example,

[l
)
S~

./



Edge <> Input

The key insight: The labels of the edges traversed are the inputs
an inhomogeneous cellular automata will receive when run on x.



Edge <> Input

The key insight: The labels of the edges traversed are the inputs
an inhomogeneous cellular automata will receive when run on x.

x=[HEN



Edge <> Input

The key insight: The labels of the edges traversed are the inputs
an inhomogeneous cellular automata will receive when run on x.

x=[HEN

Corresponds to

by



Edge <> Input

The key insight: The labels of the edges traversed are the inputs
an inhomogeneous cellular automata will receive when run on x.

x=[HEN

Corresponds to

by

Corresponds to
NN NN ond (W



B-to-[] with )\238, )\215

Let's connect our graph with ability to transition.

A238

p ple Ha"mlaiils ois Rl "alnay

A215

g i Riainie"Riaals R als"S

Can these automata do the B-to-OJ transition?



B-to-[] with )\238, )\215

Both output l on HEN, HN ), (W], (T A

A238

n e M uiEnls o BB

A215

n gl MpEal"miean b S




B-to-[] with )\238, )\215

Both output l on HEN, HN ), (W], (T A

A238

p ale Mp"aie=nls o Mol nuy

A215

n ple MpEale"mia b Mo oy

Let’s remove those edges and see if we can still make an x(©).



B-to-[] with )\238, )\215

A23g, A215's graph:



B-to-[] with )\238, )\215
A238, A215's graph:

E{D—>E6>

IN-Em (N

There are no cycles with a l.



B-to-[] with )\238, )\215

A23g, A215's graph:

- mm (.

So there are no states containing a B that A»3g, A215 aren’t forced
to output a M on.



B-to-[] with )\238, )\215
A238, A215's graph:

E{D—>E6>

IN-Em (N

So using A23g, Ao15 the B-to-[ transition is impossible.



B-to-[] with )\238, )\215
A238, A215's graph:

E{D—>E6>

EN- Em (N

So A23g, A215 cannot “die”.



B-to-[] with )\238, )\215
A238, A215's graph:

E{D—>E6>

IN-Em (N

So Aos3g, As1s cannot Survive k Steps for any k.



When is l-to-[] impossible?

Putting this together.
If we prune all edges from our graph labeled with a pattern both
Ai, Aj output B on



When is l-to-[] impossible?

Putting this together.
If we prune all edges from our graph labeled with a pattern both
Ai, Aj output B on and there is cycle passing through a node with

a



When is l-to-[] impossible?

Putting this together.

If we prune all edges from our graph labeled with a pattern both
Ai, Aj output B on and there is cycle passing through a node with
a W, that cycle corresponds to x0) st W e x(© and Ai,Aj can be
composed to make x(1) all-00.



When is l-to-[] impossible?

Putting this together.

If we prune all edges from our graph labeled with a pattern both
Ai, Aj output B on and there is cycle passing through a node with
a W, that cycle corresponds to x0) st W e x(© and Ai,Aj can be
composed to make x() all-00. l.e the. W-to-OJ transition is
possible.



When is l-to-[] impossible?

Putting this together.

If we prune all edges from our graph labeled with a pattern both
Ai, Aj output B on and there is cycle passing through a node with
a W, that cycle corresponds to x0) st W e x(© and Ai,Aj can be
composed to make x() all-00. l.e the. W-to-OJ transition is
possible. Q.E.D.



Automating This

In the general case, checking for length-w cycles can be done

S

Hint: Every cycle is a linear combination of simple cycles.

EED



Conclusion

1. Our workshop paper:



Conclusion

1. Our workshop paper:
1.1 Can't “die” — can't survive k steps (technique2).



Conclusion

1. Our workshop paper:

1.1 Can't “die” — can't survive k steps (technique2).
1.2 j,j are odd — can't survive k steps (techniquel).



Conclusion

1. Our workshop paper:
1.1 Can't “die” — can't survive k steps (technique2).
1.2 j,j are odd — can't survive k steps (techniquel).
1.3 Classify 67% of automata tuples.



Conclusion

1. Our workshop paper:

1.1 Can't “die” — can't survive k steps (technique2).
1.2 j,j are odd — can't survive k steps (techniquel).
1.3 Classify 67% of automata tuples.

2. Forthcoming work:



Conclusion

1. Our workshop paper:

1.1 Can't “die” — can't survive k steps (technique2).
1.2 j,j are odd — can't survive k steps (techniquel).
1.3 Classify 67% of automata tuples.

2. Forthcoming work:
2.1 Classifies > 99% of automata tuples.



Conclusion

1. Our workshop paper:
1.1 Can't “die” — can't survive k steps (technique2).
1.2 j,j are odd — can't survive k steps (techniquel).
1.3 Classify 67% of automata tuples.

2. Forthcoming work:

2.1 Classifies > 99% of automata tuples.
2.2 Efficient automata synthesis with SAT solver.



Conclusion

1. Our workshop paper:
1.1 Can't “die” — can't survive k steps (technique2).
1.2 j,j are odd — can't survive k steps (techniquel).
1.3 Classify 67% of automata tuples.

2. Forthcoming work:
2.1 Classifies > 99% of automata tuples.
2.2 Efficient automata synthesis with SAT solver.
2.3 Precisely what SAT features explain performance.



