
Cellular Automata Surviving k Steps

Zeke Medley & Panagiotis Manolios
Northeastern University

May 2025



Surviving k Steps

1. Problem posed by Wolfram in 2024.

2. Explored in several essays. 1

3. Wolfram takes an empirical view, we take a mathematical one.

4. Our work: > 99% solved.

1writings.stephenwolfram.com posts dated May 3, 2024; August 22, 2024;
December 5, 2024; February 3, 2025.



Surviving k Steps

1. Problem posed by Wolfram in 2024.

2. Explored in several essays. 1

3. Wolfram takes an empirical view, we take a mathematical one.

4. Our work: > 99% solved.

1writings.stephenwolfram.com posts dated May 3, 2024; August 22, 2024;
December 5, 2024; February 3, 2025.



Surviving k Steps

1. Problem posed by Wolfram in 2024.

2. Explored in several essays. 1

3. Wolfram takes an empirical view, we take a mathematical one.

4. Our work: > 99% solved.

1writings.stephenwolfram.com posts dated May 3, 2024; August 22, 2024;
December 5, 2024; February 3, 2025.



Surviving k Steps

1. Problem posed by Wolfram in 2024.

2. Explored in several essays. 1

3. Wolfram takes an empirical view, we take a mathematical one.

4. Our work: > 99% solved.

1writings.stephenwolfram.com posts dated May 3, 2024; August 22, 2024;
December 5, 2024; February 3, 2025.



Elementary Cellular Automata

1. Functions from {■,□}3 → {■,□}.

2. Let λi be the ith one (“Wolfram Code” enumeration).

3. For example, λ4’s truth table

λ4

λ4(■,■,■) = □, λ4(□,■,□) = ■, . . .



Elementary Cellular Automata

1. Functions from {■,□}3 → {■,□}.
2. Let λi be the ith one (“Wolfram Code” enumeration).

3. For example, λ4’s truth table

λ4

λ4(■,■,■) = □, λ4(□,■,□) = ■, . . .



Elementary Cellular Automata

1. Functions from {■,□}3 → {■,□}.
2. Let λi be the ith one (“Wolfram Code” enumeration).

3. For example, λ4’s truth table

λ4

λ4(■,■,■) = □, λ4(□,■,□) = ■, . . .



Growing λ4 (visually)

λ4

x (j) =



Growing λ4 (visually)

λ4

x (j) =

x (j+1) =



Growing λ4 (visually)

λ4

x (j) =

x (j+1) =



Growing λ4 (visually)

λ4

x (j) =

x (j+1) =



Growing λ4 (visually)

λ4

x (j) =

x (j+1) =



Growing λ4 (visually)

λ4

x (j) =

x (j+1) =



Growing λ4 (visually)

λ4

x (j) =

x (j+1) =



Growing λ4

jth state x (j) ∈ {■,□}w , next state x (j+1),

x
(j+1)
i = λ4(x

(j)
i−1 mod w , x

(j)
i , x

(j)
i+1 mod w )



Inhomogeneous Cellular Automata

1. Choose what λi to use where, instead of using the same λi

everywhere.

2. Formally, use a rule array a : N2 → {λi1 , . . . , λit},

x
(j+1)
i = a(i , j)(x

(j)
i−1 mod w , x

(j)
i , x

(j)
i+1 mod w )



Inhomogeneous Cellular Automata

1. Choose what λi to use where, instead of using the same λi

everywhere.

2. Formally, use a rule array a : N2 → {λi1 , . . . , λit},

x
(j+1)
i = a(i , j)(x

(j)
i−1 mod w , x

(j)
i , x

(j)
i+1 mod w )



Growing Inhomogeneous Cellular Automata (visually)

λ4

λ110

x (j) =

x (j+1) =

a(1, j) = λ110



Inhomogeneous Cellular Automata

1. Choose what λi to use where, instead of using the same λi

everywhere.

2. Formally, use a rule array a : N2 → {λi1 , . . . , λit},

x
(j+1)
i = a(i , j)(x

(j)
i−1 mod w , x

(j)
i , x

(j)
i+1 mod w )

3. What can we synthesize with appropriate choice of a?



Figure: An inhomogeneous cellular automata using λ126 and λ225.



Inhomogeneous Cellular Automata

1. Inhomogeneous Cellular Automata are very expressive2.

2. Our work looks at the Survive-k-Steps problem posed by
Wolfram in 2024.

2A survey of cellular automata: types, dynamics, non-uniformity and
applications, Kamalika Bhattacharjee et. al.



Inhomogeneous Cellular Automata

1. Inhomogeneous Cellular Automata are very expressive2.

2. Our work looks at the Survive-k-Steps problem posed by
Wolfram in 2024.

2A survey of cellular automata: types, dynamics, non-uniformity and
applications, Kamalika Bhattacharjee et. al.



Survive-5-Steps (visually)

λ4

λ110
5 steps

λ4

λ110



Survive-5-Steps (visually)

λ4

λ110
5 steps

This proves λ4, λ110 can Survive-5-Steps, but which k are solvable
in general?



Survive-k-Steps

If there exists a rule array using only λi , λj such that,

1. x (0) has exactly one ■,

2. ∀i < k ,■ ∈ x (i),

3. ∀i ≥ k ,■ ̸∈ x (i)

then, λi and λj can solve Survive-k-Steps .



Survive-k-Steps

If there exists a rule array using only λi , λj such that,

1. x (0) has exactly one ■,

2. ∀i < k ,■ ∈ x (i),

3. ∀i ≥ k ,■ ̸∈ x (i)

then, λi and λj can solve Survive-k-Steps .



Survive-k-Steps

If there exists a rule array using only λi , λj such that,

1. x (0) has exactly one ■,

2. ∀i < k ,■ ∈ x (i),

3. ∀i ≥ k ,■ ̸∈ x (i)

then, λi and λj can solve Survive-k-Steps .



Survive-k-Steps

If there exists a rule array using only λi , λj such that,

1. x (0) has exactly one ■,

2. ∀i < k ,■ ∈ x (i),

3. ∀i ≥ k ,■ ̸∈ x (i)

then, λi and λj can solve Survive-k-Steps .



Survive-k-Steps

If there exists a rule array using only λi , λj such that,

1. x (0) has exactly one ■,

2. ∀i < k ,■ ∈ x (i),

3. ∀i ≥ k ,■ ̸∈ x (i)

then, λi and λj can solve Survive-k-Steps .



Research Question

For any i , j , is the set

{k | λi , λj solve Survive-k-Steps}

finite?



Evidence of Structure

Figure: ■ at position (i , j) means Survive-50-Steps on a width 31 board
is possible with λi and λj . Top-left is (0, 0), bottom right is (255, 255).



The ■-to-□ Transition

To Survive-k-Steps λi ,λj need to “die”.

λ4

λ110

x (0)

x (1)

“die”, i.e. ∃x (0),■ ∈ x ∧■ ̸∈ x (1),

i.e. the ■-to-□ Transition.



The ■-to-□ Transition

To Survive-k-Steps λi ,λj need to “die”.

λ4

λ110

x (0)

x (1)

“die”, i.e. ∃x (0),■ ∈ x ∧■ ̸∈ x (1),i.e. the ■-to-□ Transition.



When is ■-to-□ impossible?

Figure: ■ at position (i , j) means λi , λj cannot do the ■-to-□ transition
on a width 31 board. Top-left is (0, 0), bottom right is (255, 255).



When is ■-to-□ impossible?

Let’s prove it.

1. ■ ∈ x (0) if x contains a pattern with a ■. For example,

x = .

contains the pattern .

2. ■-to-□ is possible if λi or λj output □ on that pattern.

3. For example,

λ255

λ254

cannot transition from ■-to-□.



When is ■-to-□ impossible?

Let’s prove it.

1. ■ ∈ x (0) if x contains a pattern with a ■. For example,

x = .

contains the pattern .

2. ■-to-□ is possible if λi or λj output □ on that pattern.

3. For example,

λ255

λ254

cannot transition from ■-to-□.



When is ■-to-□ impossible?

Let’s prove it.

1. ■ ∈ x (0) if x contains a pattern with a ■. For example,

x = .

contains the pattern .

2. ■-to-□ is possible if λi or λj output □ on that pattern.

3. For example,

λ255

λ254

cannot transition from ■-to-□.



When is ■-to-□ impossible?

Let’s prove it.

1. ■ ∈ x (0) if x contains a pattern with a ■. For example,

x = .

contains the pattern .

2. ■-to-□ is possible if λi or λj output □ on that pattern.

3. For example,

λ255

λ254

cannot transition from ■-to-□.



Reasoning about patterns

1. We need a way to reason about patterns in x ∈ {■,□}w .

2. Consider a two-cell sliding window starting at .

■ next

LL

□ next

99



Reasoning about patterns

1. We need a way to reason about patterns in x ∈ {■,□}w .
2. Consider a two-cell sliding window starting at .

■ next

LL

□ next

99



Reasoning about patterns

1. We need a way to reason about patterns in x ∈ {■,□}w .
2. Consider a two-cell sliding window starting at .

LL

99



Reasoning about patterns

1. We need a way to reason about patterns in x ∈ {■,□}w .
2. Consider a two-cell sliding window starting at .

□ next //

■ next

��



Reasoning about patterns

1. We need a way to reason about patterns in x ∈ {■,□}w .
2. Consider a two-cell sliding window starting at .

//

��



Reasoning about patterns

1. We need a way to reason about patterns in x ∈ {■,□}w .
2. Consider a two-cell sliding window.

//

��

��

yy
LL

99 ZZ

oo

This is a De Bruijn graph.



Cycle ↔ State

There is a bijection between {■,□}w (with wrapping) and cycles
in this graph.

For example,

x = .

//

��

��

yy
LL

99 ZZ

oo



Cycle ↔ State

There is a bijection between {■,□}w (with wrapping) and cycles
in this graph. For example,

x = .

//

��

��

yy
LL

99 ZZ

oo



Cycle ↔ State

There is a bijection between {■,□}w (with wrapping) and cycles
in this graph. For example,

x = .

//

��

��

yy
LL

99 ZZ

oo



Cycle ↔ State

There is a bijection between {■,□}w (with wrapping) and cycles
in this graph. For example,

x = .

//

��

��

yy
LL

99 ZZ

oo



Cycle ↔ State

There is a bijection between {■,□}w (with wrapping) and cycles
in this graph. For example,

x = .

//

��

��

yy
LL

99 ZZ

oo



Cycle ↔ State

There is a bijection between {■,□}w (with wrapping) and cycles
in this graph. For example,

x = .

//

��

��

yy
LL

99 ZZ

oo



Cycle ↔ State

There is a bijection between {■,□}w (with wrapping) and cycles
in this graph. For example,

x = .

//

��

��

yy
LL

99 ZZ

oo



Cycle ↔ State

There is a bijection between {■,□}w (with wrapping) and cycles
in this graph. For example,

x = .

//

��

��

yy
LL

99 ZZ

oo



Cycle ↔ State

There is a bijection between {■,□}w (with wrapping) and cycles
in this graph. For example,

x = .

//

��

��

yy
LL

99 ZZ

oo



Edge ↔ Input

The key insight: The labels of the edges traversed are the inputs
an inhomogeneous cellular automata will receive when run on x .

x = .

Corresponds to

��

99 ZZ

oo

Corresponds to
, , , and .



Edge ↔ Input

The key insight: The labels of the edges traversed are the inputs
an inhomogeneous cellular automata will receive when run on x .

x = .

Corresponds to

��

99 ZZ

oo

Corresponds to
, , , and .



Edge ↔ Input

The key insight: The labels of the edges traversed are the inputs
an inhomogeneous cellular automata will receive when run on x .

x = .

Corresponds to

��

99 ZZ

oo

Corresponds to
, , , and .



Edge ↔ Input

The key insight: The labels of the edges traversed are the inputs
an inhomogeneous cellular automata will receive when run on x .

x = .

Corresponds to

��

99 ZZ

oo

Corresponds to
, , , and .



■-to-□ with λ238, λ215

Let’s connect our graph with ability to transition.

λ215

λ238

Can these automata do the ■-to-□ transition?



■-to-□ with λ238, λ215

Both output ■ on , , , .

λ215

λ238

Let’s remove those edges and see if we can still make an x (0).



■-to-□ with λ238, λ215

Both output ■ on , , , .

λ215

λ238

Let’s remove those edges and see if we can still make an x (0).



■-to-□ with λ238, λ215

λ238, λ215’s graph:

//

��

��

oo

There are no cycles with a ■.



■-to-□ with λ238, λ215

λ238, λ215’s graph:

//

��

��

oo

There are no cycles with a ■.



■-to-□ with λ238, λ215

λ238, λ215’s graph:

//

��

��

oo

So there are no states containing a ■ that λ238, λ215 aren’t forced
to output a ■ on.



■-to-□ with λ238, λ215

λ238, λ215’s graph:

//

��

��

oo

So using λ238, λ215 the ■-to-□ transition is impossible.



■-to-□ with λ238, λ215

λ238, λ215’s graph:

//

��

��

oo

So λ238, λ215 cannot “die”.



■-to-□ with λ238, λ215

λ238, λ215’s graph:

//

��

��

oo

So λ238, λ215 cannot Survive k Steps for any k.



When is ■-to-□ impossible?

Putting this together.
If we prune all edges from our graph labeled with a pattern both
λi , λj output ■ on

and there is cycle passing through a node with
a ■, that cycle corresponds to x (0) s.t. ■ ∈ x (0) and λi ,λj can be
composed to make x (1) all-□. I.e the. ■-to-□ transition is
possible. Q.E.D.



When is ■-to-□ impossible?

Putting this together.
If we prune all edges from our graph labeled with a pattern both
λi , λj output ■ on and there is cycle passing through a node with
a ■,

that cycle corresponds to x (0) s.t. ■ ∈ x (0) and λi ,λj can be
composed to make x (1) all-□. I.e the. ■-to-□ transition is
possible. Q.E.D.



When is ■-to-□ impossible?

Putting this together.
If we prune all edges from our graph labeled with a pattern both
λi , λj output ■ on and there is cycle passing through a node with
a ■, that cycle corresponds to x (0) s.t. ■ ∈ x (0) and λi ,λj can be
composed to make x (1) all-□.

I.e the. ■-to-□ transition is
possible. Q.E.D.



When is ■-to-□ impossible?

Putting this together.
If we prune all edges from our graph labeled with a pattern both
λi , λj output ■ on and there is cycle passing through a node with
a ■, that cycle corresponds to x (0) s.t. ■ ∈ x (0) and λi ,λj can be
composed to make x (1) all-□. I.e the. ■-to-□ transition is
possible.

Q.E.D.



When is ■-to-□ impossible?

Putting this together.
If we prune all edges from our graph labeled with a pattern both
λi , λj output ■ on and there is cycle passing through a node with
a ■, that cycle corresponds to x (0) s.t. ■ ∈ x (0) and λi ,λj can be
composed to make x (1) all-□. I.e the. ■-to-□ transition is
possible. Q.E.D.



Automating This

In the general case, checking for length-w cycles can be done
efficiently.

//

��

��

yy
LL

99 ZZ

oo

Hint: Every cycle is a linear combination of simple cycles.



Conclusion

1. Our workshop paper:

1.1 Can’t “die” → can’t survive k steps (technique2).
1.2 i ,j are odd → can’t survive k steps (technique1).
1.3 Classify 67% of automata tuples.

2. Forthcoming work:

2.1 Classifies > 99% of automata tuples.
2.2 Efficient automata synthesis with SAT solver.
2.3 Precisely what SAT features explain performance.



Conclusion

1. Our workshop paper:

1.1 Can’t “die” → can’t survive k steps (technique2).

1.2 i ,j are odd → can’t survive k steps (technique1).
1.3 Classify 67% of automata tuples.

2. Forthcoming work:

2.1 Classifies > 99% of automata tuples.
2.2 Efficient automata synthesis with SAT solver.
2.3 Precisely what SAT features explain performance.



Conclusion

1. Our workshop paper:

1.1 Can’t “die” → can’t survive k steps (technique2).
1.2 i ,j are odd → can’t survive k steps (technique1).

1.3 Classify 67% of automata tuples.

2. Forthcoming work:

2.1 Classifies > 99% of automata tuples.
2.2 Efficient automata synthesis with SAT solver.
2.3 Precisely what SAT features explain performance.



Conclusion

1. Our workshop paper:

1.1 Can’t “die” → can’t survive k steps (technique2).
1.2 i ,j are odd → can’t survive k steps (technique1).
1.3 Classify 67% of automata tuples.

2. Forthcoming work:

2.1 Classifies > 99% of automata tuples.
2.2 Efficient automata synthesis with SAT solver.
2.3 Precisely what SAT features explain performance.



Conclusion

1. Our workshop paper:

1.1 Can’t “die” → can’t survive k steps (technique2).
1.2 i ,j are odd → can’t survive k steps (technique1).
1.3 Classify 67% of automata tuples.

2. Forthcoming work:

2.1 Classifies > 99% of automata tuples.
2.2 Efficient automata synthesis with SAT solver.
2.3 Precisely what SAT features explain performance.



Conclusion

1. Our workshop paper:

1.1 Can’t “die” → can’t survive k steps (technique2).
1.2 i ,j are odd → can’t survive k steps (technique1).
1.3 Classify 67% of automata tuples.

2. Forthcoming work:

2.1 Classifies > 99% of automata tuples.

2.2 Efficient automata synthesis with SAT solver.
2.3 Precisely what SAT features explain performance.



Conclusion

1. Our workshop paper:

1.1 Can’t “die” → can’t survive k steps (technique2).
1.2 i ,j are odd → can’t survive k steps (technique1).
1.3 Classify 67% of automata tuples.

2. Forthcoming work:

2.1 Classifies > 99% of automata tuples.
2.2 Efficient automata synthesis with SAT solver.

2.3 Precisely what SAT features explain performance.



Conclusion

1. Our workshop paper:

1.1 Can’t “die” → can’t survive k steps (technique2).
1.2 i ,j are odd → can’t survive k steps (technique1).
1.3 Classify 67% of automata tuples.

2. Forthcoming work:

2.1 Classifies > 99% of automata tuples.
2.2 Efficient automata synthesis with SAT solver.
2.3 Precisely what SAT features explain performance.


