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2. Explored in several essays. !
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3. Wolfram takes an empirical view, we take a mathematical one.
4. QOur work: > 99% solved.

Lwritings.stephenwolfram.com posts dated May 3, 2024; August 22, 2024;
December 5, 2024; February 3, 2025.
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Elementary Cellular Automata

1. Functions from {W,0}° — {W O}
2. Let \; be the ith one (“Wolfram Code” enumeration).
3. For example, A4's truth table
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Growing Inhomogeneous Cellular Automata (visually)
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Inhomogeneous Cellular Automata

1. Choose what \; to use where, instead of using the same A;
everywhere.

2. Formally, use a rule array a: N?> — {\;i,..., \i.},

H 1 P j j j
X,-(J+ ) = a(’v])(Xi(J—)l mod w> Xi(J)’ XI'(.—]&-)l mod W)

3. What can we synthesize with appropriate choice of a?



Figure: An inhomogeneous cellular automata using A126 and Aoos.
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Inhomogeneous Cellular Automata

1. Inhomogeneous Cellular Automata are very expressive?.

2. Our work looks at the Survive-k-Steps problem posed by
Wolfram in 2024.

What’s Really Going On in Machine
Learning? Some Minimal Models

August 22, 2024
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2 A survey of cellular automata: types, dynamics, non-uniformity and
applications, Kamalika Bhattacharjee et. al.



Survive-5-Steps (visually)

m

%% A110

5 steps <

A4

puplen il Sl s REE S E

A110

gl R "mlaSils it R alnay




Survive-5-Steps (visually)
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This proves A4, A119 can Survive-5-Steps, but which k are solvable
in general?
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Survive-k-Steps

If there exists a rule array using only A;, \; such that,
1. x(© has exactly one H,
2. Vi< k,me x(),
3. Vi> k,m ¢ x()

then, \; and \; can solve Survive-k-Steps .



Research Question

For any i, j, is the set
{k | Ai, Aj solve Survive-k-Steps}

finite?



Evidence of Structure
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Figure: B at position (7, /) means Survive-50-Steps on a width 31 board
is possible with \; and A;. Top-left is (0, 0), bottom right is (255, 255).
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The B-to-L] Transition

To Survive-k-Steps A\;,\; need to “die”.

Y
Y, )0

“die”, i.e. IxO) M e x A B ¢ x(D e the W-to-0 Transition.



When is l-to-[] impossible?

Figure: B at position (/,j) means \;, A; cannot do the B-to-[J transition
on a width 31 board. Top-left is (0,0), bottom right is (255, 255).
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When is l-to-[] impossible?

Let's prove it.
1. M e x(O if x contains a pattern with a B. For example,

x=[HEN

contains the pattern HC L
2. B-to-U is possible if A\; or \; output [J on that pattern.

3. For example,
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cannot transition from W-to-[J.
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Reasoning about patterns

1. We need a way to reason about patterns in x € {l, OJ}".

2. Consider a two-cell sliding window.

o

This is a De Bruijn graph.

EED
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There is a bijection between {M, [} (with wrapping) and cycles
in this graph. For example,
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The key insight: The labels of the edges traversed are the inputs
an inhomogeneous cellular automata will receive when run on x.
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B-to-[] with )\238, )\215

Let's connect our graph with ability to transition.
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Can these automata do the B-to-OJ transition?
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Both output l on HEN, HN ), (W], (T A
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Let’s remove those edges and see if we can still make an x(©).



B-to-[] with )\238, )\215

A23g, A215's graph:



B-to-[] with )\238, )\215
A238, A215's graph:
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B-to-[] with )\238, )\215

A23g, A215's graph:

- mm (.

So there are no states containing a B that A»3g, A215 aren’t forced
to output a M on.
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So using A23g, Ao15 the B-to-[ transition is impossible.
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B-to-[] with )\238, )\215
A238, A215's graph:

E{D—>E6>

IN-Em (N

So Aos3g, As1s cannot Survive k Steps for any k.
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When is l-to-[] impossible?

Putting this together.

If we prune all edges from our graph labeled with a pattern both
Ai, Aj output B on and there is cycle passing through a node with
a W, that cycle corresponds to x0) st W e x(© and Ai,Aj can be
composed to make x() all-00. l.e the. W-to-OJ transition is
possible. Q.E.D.



Automating This

In the general case, checking for length-w cycles can be done

S

Hint: Every cycle is a linear combination of simple cycles.

EED
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Conclusion

1. Our workshop paper:
1.1 Can't “die” — can't survive k steps (technique2).
1.2 j,j are odd — can't survive k steps (techniquel).
1.3 Classify 67% of automata tuples.

2. Forthcoming work:
2.1 Classifies > 99% of automata tuples.
2.2 Efficient automata synthesis with SAT solver.
2.3 Precisely what SAT features explain performance.



