Cellular Automata Surviving k Steps

Zeke Medley & Panagiotis Manolios Northeastern University

May 2025

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

1. Problem posed by Wolfram in 2024.

¹writings.stephenwolfram.com posts dated May 3, 2024; August 22, 2024; December 5, 2024; February 3, 2025.

- 1. Problem posed by Wolfram in 2024.
- 2. Explored in several essays. ¹

What's Really Going On in Machine Learning? Some Minimal Models

August 22, 2024

¹writings.stephenwolfram.com posts dated May 3, 2024; August 22, 2024; December 5, 2024; February 3, 2025.

- 1. Problem posed by Wolfram in 2024.
- 2. Explored in several essays. ¹

What's Really Going On in Machine Learning? Some Minimal Models

August 22, 2024

3. Wolfram takes an empirical view, we take a mathematical one.

¹writings.stephenwolfram.com posts dated May 3, 2024; August 22, 2024; December 5, 2024; February 3, 2025.

- 1. Problem posed by Wolfram in 2024.
- 2. Explored in several essays. ¹

What's Really Going On in Machine Learning? Some Minimal Models

August 22, 2024

- 3. Wolfram takes an empirical view, we take a mathematical one.
- 4. Our work: > 99% solved.

¹writings.stephenwolfram.com posts dated May 3, 2024; August 22, 2024; December 5, 2024; February 3, 2025.

Elementary Cellular Automata

1. Functions from $\{\blacksquare, \Box\}^3 \to \{\blacksquare, \Box\}$.

Elementary Cellular Automata

- 1. Functions from $\{\blacksquare, \square\}^3 \to \{\blacksquare, \square\}$.
- 2. Let λ_i be the *i*th one ("Wolfram Code" enumeration).

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Elementary Cellular Automata

- 1. Functions from $\{\blacksquare, \Box\}^3 \to \{\blacksquare, \Box\}$.
- 2. Let λ_i be the *i*th one ("Wolfram Code" enumeration).
- 3. For example, λ_4 's truth table

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

$$\begin{array}{c} x^{(j)} = \\ x^{(j+1)} = \end{array}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

$$\begin{array}{c} x^{(j)} = \\ x^{(j+1)} = \end{array}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

Growing λ_4

jth state
$$x^{(j)} \in \{\blacksquare, \Box\}^w$$
, next state $x^{(j+1)}$,
 $x_i^{(j+1)} = \lambda_4(x_{i-1 \mod w}^{(j)}, x_i^{(j)}, x_{i+1 \mod w}^{(j)})$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Inhomogeneous Cellular Automata

1. Choose what λ_i to use where, instead of using the same λ_i everywhere.

Inhomogeneous Cellular Automata

- 1. Choose what λ_i to use where, instead of using the same λ_i everywhere.
- 2. Formally, use a *rule array* $a : \mathbb{N}^2 \to \{\lambda_{i_1}, \dots, \lambda_{i_t}\},\$

$$x_{i}^{(j+1)} = a(i,j)(x_{i-1 \mod w}^{(j)}, x_{i}^{(j)}, x_{i+1 \mod w}^{(j)})$$

Growing Inhomogeneous Cellular Automata (visually)

$$\begin{array}{c} x^{(j)} = \\ x^{(j+1)} = \end{array}$$

$$a(1,j) = \lambda_{110}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Inhomogeneous Cellular Automata

- 1. Choose what λ_i to use where, instead of using the same λ_i everywhere.
- 2. Formally, use a *rule array* $a : \mathbb{N}^2 \to \{\lambda_{i_1}, \dots, \lambda_{i_t}\},\$

$$x_{i}^{(j+1)} = a(i,j)(x_{i-1 \mod w}^{(j)}, x_{i}^{(j)}, x_{i+1 \mod w}^{(j)})$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

3. What can we synthesize with appropriate choice of a?

Figure: An inhomogeneous cellular automata using λ_{126} and λ_{225} .

Inhomogeneous Cellular Automata

1. Inhomogeneous Cellular Automata are very expressive².

²A survey of cellular automata: types, dynamics, non-uniformity and applications, Kamalika Bhattacharjee *et. al.*

Inhomogeneous Cellular Automata

- 1. Inhomogeneous Cellular Automata are very expressive².
- Our work looks at the Survive-k-Steps problem posed by Wolfram in 2024.

What's Really Going On in Machine Learning? Some Minimal Models

August 22, 2024

²A survey of cellular automata: types, dynamics, non-uniformity and applications, Kamalika Bhattacharjee et. al.

Survive-5-Steps (visually)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ()~

Survive-5-Steps (visually)

This proves λ_4 , λ_{110} can Survive-5-Steps, but which k are solvable in general?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

If there exists a rule array using only λ_i , λ_j such that,

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

If there exists a rule array using only λ_i , λ_j such that, 1. $x^{(0)}$ has exactly one \blacksquare ,

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

If there exists a rule array using only λ_i , λ_j such that,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1. $x^{(0)}$ has exactly one \blacksquare ,
- 2. $\forall i < k, \blacksquare \in x^{(i)},$

If there exists a rule array using only λ_i , λ_j such that,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1. $x^{(0)}$ has exactly one \blacksquare ,
- 2. $\forall i < k, \blacksquare \in x^{(i)},$
- 3. $\forall i \geq k, \blacksquare \notin x^{(i)}$

If there exists a rule array using only λ_i , λ_j such that,

- 1. $x^{(0)}$ has exactly one \blacksquare ,
- 2. $\forall i < k, \blacksquare \in x^{(i)},$
- 3. $\forall i \geq k, \blacksquare \notin x^{(i)}$

then, λ_i and λ_j can solve Survive-k-Steps .

Research Question

For any i, j, is the set

 $\{k \mid \lambda_i, \lambda_j \text{ solve Survive-}k\text{-Steps}\}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

finite?

Evidence of Structure

Figure: \blacksquare at position (i, j) means Survive-50-Steps on a width 31 board is possible with λ_i and λ_j . Top-left is (0, 0), bottom right is (255, 255).

The -to- Transition

To Survive-k-Steps λ_i, λ_j need to "die".

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The -to- Transition

To Survive-k-Steps λ_i, λ_j need to "die".

"die", i.e. $\exists x^{(0)}, \blacksquare \in x \land \blacksquare \notin x^{(1)}$, i.e. the \blacksquare -to- \Box Transition.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

When is \blacksquare -to- \Box impossible?

Figure: \blacksquare at position (i, j) means λ_i , λ_j cannot do the \blacksquare -to- \Box transition on a width 31 board. Top-left is (0, 0), bottom right is (255, 255).

When is \blacksquare -to- \Box impossible?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let's prove it.
Let's prove it.

1. $\blacksquare \in x^{(0)}$ if x contains a *pattern* with a \blacksquare . For example,

contains the pattern **I**.

Let's prove it.

1. $\blacksquare \in x^{(0)}$ if x contains a *pattern* with a \blacksquare . For example,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

contains the pattern **I**.

2. \blacksquare -to- \square is possible if λ_i or λ_j output \square on that pattern.

Let's prove it.

1. $\blacksquare \in x^{(0)}$ if x contains a *pattern* with a \blacksquare . For example,

contains the pattern

- 2. \blacksquare -to- \square is possible if λ_i or λ_j output \square on that pattern.
- 3. For example,

cannot transition from \blacksquare -to- \Box .

1. We need a way to reason about patterns in $x \in \{\blacksquare, \square\}^w$.

(ロ)、(型)、(E)、(E)、 E) の(()

1. We need a way to reason about patterns in $x \in \{\blacksquare, \square\}^w$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

2. Consider a two-cell sliding window starting at **III**.

1. We need a way to reason about patterns in $x \in \{\blacksquare, \square\}^w$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

2. Consider a two-cell sliding window starting at **III**.

- 1. We need a way to reason about patterns in $x \in \{\blacksquare, \square\}^w$.
- 2. Consider a two-cell sliding window starting at **I**.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 1. We need a way to reason about patterns in $x \in \{\blacksquare, \square\}^w$.
- 2. Consider a **two-cell sliding window** starting at **I**.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 1. We need a way to reason about patterns in $x \in \{\blacksquare, \square\}^w$.
- 2. Consider a two-cell sliding window.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

This is a De Bruijn graph.

There is a bijection between $\{\blacksquare, \Box\}^w$ (with wrapping) and cycles in this graph. For example,

$$x =$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

There is a bijection between $\{\blacksquare, \Box\}^w$ (with wrapping) and cycles in this graph. For example,

$$x =$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$x =$$

$$x =$$

There is a bijection between $\{\blacksquare, \square\}^w$ (with wrapping) and cycles in this graph. For example,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$x =$$

$$x =$$

The key insight: The labels of the edges traversed are the inputs an inhomogeneous cellular automata will receive when run on x.

The key insight: The labels of the edges traversed are the inputs an inhomogeneous cellular automata will receive when run on x.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The key insight: The labels of the edges traversed are the inputs an inhomogeneous cellular automata will receive when run on x.

 $x = \square$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Corresponds to

The key insight: The labels of the edges traversed are the inputs an inhomogeneous cellular automata will receive when run on x.

 $x = \square$

Corresponds to

Corresponds to

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let's connect our graph with ability to transition.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Can these automata do the \blacksquare -to- \Box transition?

Both output ■ on ■■■, ■■□, □■□, □■■.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let's remove those edges and see if we can still make an $x^{(0)}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\lambda_{238},\,\lambda_{215}\,\text{'s graph}:$

 $\lambda_{238},\,\lambda_{215}\,\text{'s graph}:$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

There are no cycles with a \blacksquare .

 λ_{238} , λ_{215} 's graph:

So there are no states containing a \blacksquare that λ_{238} , λ_{215} aren't forced to output a \blacksquare on.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

 $\lambda_{238},\,\lambda_{215}\,\text{'s graph}:$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

So using λ_{238} , λ_{215} the \blacksquare -to- \Box transition is impossible.

 $\lambda_{238},\,\lambda_{215}\,{\rm 's}$ graph:

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

So λ_{238} , λ_{215} cannot "die".

 $\lambda_{238},\,\lambda_{215}\,\text{'s graph}:$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

So λ_{238} , λ_{215} cannot Survive k Steps for any k.

When is \blacksquare -to- \square impossible?

Putting this together.

If we prune all edges from our graph labeled with a pattern both λ_i , λ_i output \blacksquare on

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Putting this together.

If we prune all edges from our graph labeled with a pattern both λ_i , λ_j output \blacksquare on and there is cycle passing through a node with a \blacksquare ,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Putting this together.

If we prune all edges from our graph labeled with a pattern both λ_i , λ_j output \blacksquare on and there is cycle passing through a node with a \blacksquare , that cycle corresponds to $x^{(0)}$ s.t. $\blacksquare \in x^{(0)}$ and λ_i, λ_j can be composed to make $x^{(1)}$ all- \square .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Putting this together.

If we prune all edges from our graph labeled with a pattern both λ_i , λ_j output \blacksquare on and there is cycle passing through a node with a \blacksquare , that cycle corresponds to $x^{(0)}$ s.t. $\blacksquare \in x^{(0)}$ and λ_i, λ_j can be composed to make $x^{(1)}$ all- \square . I.e the. \blacksquare -to- \square transition is possible.

Putting this together.

If we prune all edges from our graph labeled with a pattern both λ_i , λ_j output \blacksquare on and there is cycle passing through a node with a \blacksquare , that cycle corresponds to $x^{(0)}$ s.t. $\blacksquare \in x^{(0)}$ and λ_i, λ_j can be composed to make $x^{(1)}$ all- \square . I.e the. \blacksquare -to- \square transition is possible. **Q.E.D.**

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
Automating This

In the general case, checking for length-*w* cycles can be done efficiently.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Hint: Every cycle is a linear combination of simple cycles.

1. Our workshop paper:

- 1. Our workshop paper:
 - 1.1 Can't "die" \rightarrow can't survive k steps (technique2).

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- 1. Our workshop paper:
 - 1.1 Can't "die" \rightarrow can't survive k steps (technique2).
 - 1.2 *i*,*j* are odd \rightarrow can't survive *k* steps (technique1).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1. Our workshop paper:

- 1.1 Can't "die" \rightarrow can't survive k steps (technique2).
- 1.2 *i*,*j* are odd \rightarrow can't survive *k* steps (technique1).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1.3 Classify 67% of automata tuples.

1. Our workshop paper:

- 1.1 Can't "die" \rightarrow can't survive k steps (technique2).
- 1.2 *i*,*j* are odd \rightarrow can't survive *k* steps (technique1).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $1.3\,$ Classify 67% of automata tuples.

2. Forthcoming work:

1. Our workshop paper:

- 1.1 Can't "die" \rightarrow can't survive k steps (technique2).
- 1.2 *i*,*j* are odd \rightarrow can't survive *k* steps (technique1).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- $1.3\,$ Classify 67% of automata tuples.
- 2. Forthcoming work:
 - 2.1 Classifies > 99% of automata tuples.

- 1. Our workshop paper:
 - 1.1 Can't "die" \rightarrow can't survive k steps (technique2).
 - 1.2 *i*,*j* are odd \rightarrow can't survive *k* steps (technique1).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1.3 Classify 67% of automata tuples.
- 2. Forthcoming work:
 - 2.1 Classifies > 99% of automata tuples.
 - 2.2 Efficient automata synthesis with SAT solver.

- 1. Our workshop paper:
 - 1.1 Can't "die" \rightarrow can't survive k steps (technique2).
 - 1.2 *i*,*j* are odd \rightarrow can't survive *k* steps (technique1).
 - 1.3 Classify 67% of automata tuples.
- 2. Forthcoming work:
 - 2.1 Classifies > 99% of automata tuples.
 - 2.2 Efficient automata synthesis with SAT solver.
 - 2.3 Precisely what SAT features explain performance.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●