
Progress Toward Fast Finite Sets and Maps in ACL2

Grant Jurgensen

Kestrel Institute

May 12, 2025

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 1 / 15



Outline

1 Introduction

2 Attempt #1: Ordered Sets with Treaps

3 Attempt #2: Unordered Sets with Little-Endian Patricia Trees

4 Conclusion

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 2 / 15



Introduction

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 3 / 15



Goals

Want finite sets and maps that are:
▶ Fast.
▶ Functional and persistent.
▶ Verified (no new raw lisp code, trust tags).
▶ Logically convenient.

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 4 / 15



Existing Libraries

osets and omaps
▶ Pros:

⋆ Functional and persistent.
⋆ Unique representation means set equivalence is regular equality.
⋆ Generally doesn’t expose internal implementation (users don’t have to deal with <<).

▶ Cons:
⋆ Inefficient.

What about fast alists, stobj hash tables, or arrays?
▶ Generally limited in usage (e.g. the “fast alist disipline”, stobj single-threadeness).
▶ Overhead of maintaining logical twin to raw lisp component.
▶ May require global object or name.

What about bitsets?
▶ Limited to small sets of natural numbers.

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 5 / 15



Attempt #1: Ordered Sets with Treaps

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 6 / 15



Binary Search Trees

What about binary search trees (BSTs)?
▶ A natural evolution from osets.
▶ Challenge: achieving a unique representation (without degrading performance).

⋆ Self-balancing BSTs (e.g. red-black trees, AVL trees) are generally sensitive to the order
of insertion/deletion.

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 7 / 15



Treaps

A treap (= “tree” + “heap”) is a BST with an additional max heap property.

If the BST and heap orders are total, the tree must have a unique representation.

If the BST and heap orders are generally uncorrelated, the tree will be practically
balanced.

The BST order can use <<. The heap order can use a new order, h<, based on hash
values.

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 8 / 15



Hash Function

Based on check-sum-obj.

Implementations: FNV-1a, Jenkins one-at-a-time.

Likely could be optimized much further

h< compares two objects’ hash values. If they are the same, it falls back to <<.

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 9 / 15



treesets

t

"bar"

23 'foo

'(-1/3)

<<, h<

<<, h< <<, h>

<<, h>

3643932385

1991736602

0302805398 1231041629

1455858388

Implemented in books/kestrel/treeset.

But wait! There are faster data structures!

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 10 / 15

https://github.com/acl2/acl2/tree/master/books/kestrel/treeset


Attempt #2: Unordered Sets with Little-Endian Patricia Trees

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 11 / 15



Patricia Trees

Hash values are 32-bit unsigned fixnums.
▶ Natural numbers may be viewed as bit strings. Therefore, we can consider the use of

tries.

Patricia trees (AKA binary radix trees), are a compressed form of trie.
▶ They can be very fast on fixed-size integers due to “bit-twiddling” tricks (see Okasaki

and Gill, “Fast Mergeable Integer Maps”).
▶ The non-leaf structure is naturally unique.
▶ No rebalancing or tree rotations necessary.

Hash array mapped tries (HAMTs) are faster, but require arrays.

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 12 / 15



Patricia Tree Example

1

1000

10000011

42

10001010

"baz"

11001011

'(:some 0)

Example with 8-bit hashes; previous prefix in green, branching bit in blue.

Leaf buckets are implemented as osets.

Verification is a WIP.

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 13 / 15



Conclusion

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 14 / 15



Initial Experiments

Tests on sets of size 100,000, run 10,000 times (on SBCL).

Random Elements

osets treaps patricia trees

Membership 1.92 0.02 0.03

Insertion 6.80 0.40 0.03

Deletion 25.11 0.07 0.03

Consecutive Naturals

osets treaps patricia trees

Membership 1.92 0.02 0.02

Insertion 12.04 0.07 0.02

Deletion 16.52 0.02 0.03

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 15 / 15


	Introduction
	Attempt #1: Ordered Sets with Treaps
	Attempt #2: Unordered Sets with Little-Endian Patricia Trees
	Conclusion

