Progress Toward Fast Finite Sets and Maps in ACL2 J

Grant Jurgensen

Kestrel Institute

May 12, 2025

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 1/15

Outline f‘

@ Introduction
© Attempt #1: Ordered Sets with Treaps
© Attempt #2: Unordered Sets with Little-Endian Patricia Trees

@ Conclusion

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 2/15

PSR

Da

Goals p

@ Want finite sets and maps that are:
> Fast.
» Functional and persistent.
» Verified (no new raw lisp code, trust tags).
» Logically convenient.

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 4/15

Existing Libraries ya

@ osets and omaps
> Pros:

* Functional and persistent.
* Unique representation means set equivalence is regular equality.
* Generally doesn’t expose internal implementation (users don’t have to deal with <<).

» Cons:
* |nefficient.
o What about fast alists, stobj hash tables, or arrays?

> Generally limited in usage (e.g. the “fast alist disipline”, stobj single-threadeness).
» Overhead of maintaining logical twin to raw lisp component.
» May require global object or name.

@ What about bitsets?
» Limited to small sets of natural numbers.

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 5/15

Attempt #1: Ordered Sets with Treaps }

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 6/15

Binary Search Trees y:

e What about binary search trees (BSTs)?

» A natural evolution from osets.
» Challenge: achieving a unique representation (without degrading performance).

* Self-balancing BSTs (e.g. red-black trees, AVL trees) are generally sensitive to the order
of insertion/deletion.

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 7/15

Treaps 4

o A treap (= “tree” + "heap”) is a BST with an additional max heap property.
o If the BST and heap orders are total, the tree must have a unique representation.

o If the BST and heap orders are generally uncorrelated, the tree will be practically
balanced.

@ The BST order can use <<. The heap order can use a new order, h<, based on hash
values.

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 8/15

Hash Function y:

@ Based on check-sum-obj.
@ Implementations: FNV-1a, Jenkins one-at-a-time.
o Likely could be optimized much further

@ h< compares two objects’ hash values. If they are the same, it falls back to <<.

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 9/15

treesets

3643932385

<<, h< <<, h>

1991736602 1455858388
"(-1/3)
<<, h< <<, h>
0302805398

1231041629

Implemented in books/kestrel/treeset.

@ But wait! There are faster data structures!

Grant Jurgensen (Kestrel Institute)

Fast Finite Sets & Maps in ACL2 May 12, 2025

10/15

https://github.com/acl2/acl2/tree/master/books/kestrel/treeset

Attempt #2: Unordered Sets with Little-Endian Patricia Trees J

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 11/15

Patricia Trees y:

@ Hash values are 32-bit unsigned fixnums.
> Natural numbers may be viewed as bit strings. Therefore, we can consider the use of
tries.
@ Patricia trees (AKA binary radix trees), are a compressed form of trie.

» They can be very fast on fixed-size integers due to “bit-twiddling” tricks (see Okasaki
and Gill, “Fast Mergeable Integer Maps™).

» The non-leaf structure is naturally unique.

» No rebalancing or tree rotations necessary.

e Hash array mapped tries (HAMTs) are faster, but require arrays.

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 12/15

Patricia Tree Example

/1\

1000 11001011
RN |
10000011 10001010 "(:some 0)

| |
42 "baz"

@ Example with 8-bit hashes; previous prefix in green, branching bit in blue.
o Leaf buckets are implemented as osets.
o Verification is a WIP.

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025

13/15

PSR

Da

Initial Experiments ya

Tests on sets of size 100,000, run 10,000 times (on SBCL).

Random Elements

H osets ‘ treaps ‘ patricia trees
Membership || 1.92 | 0.02 0.03

Insertion || 6.80 0.40 0.03
Deletion || 25.11 | 0.07 0.03

Consecutive Naturals

H osets ‘ treaps ‘ patricia trees
Membership || 1.92 | 0.02 0.02
Insertion || 12.04 | 0.07 0.02
Deletion || 16.52 | 0.02 0.03

Grant Jurgensen (Kestrel Institute) Fast Finite Sets & Maps in ACL2 May 12, 2025 15/15

	Introduction
	Attempt #1: Ordered Sets with Treaps
	Attempt #2: Unordered Sets with Little-Endian Patricia Trees
	Conclusion

