
Reduction to SAT: A First Experience

By Calvin Greve

calvin.greve@corratio.com

Part 2: The project

● The Four Passes

● Commutative diagram

● Proof Approaches

● Sets

● Rules Classes

● Tools

● Conclusion

Part 1: Background information

● Background

● The expression language

● Boolean Satisfiability

● Verification Approaches

I saw my dad’s screen
He was programming in lisp
Just parenthesis

Background
● Senior at Coe College, pursuing a

Computer Science degree

● For my practicum I did an
internship at Corratio.

● The challenge of this internship
was to develop and verify
software that transforms a simple
expression language into SAT.

Expression Language with binding:

● I defined an expression language
using a recursive structure. Each
expression can contain combinations
of either sub-expressions, or
variables.

● For the sake of simplicity,
expressions were limited to 2
arguments where applicable.

● Let bindings were the source of the
majority of the issues I encountered
during this project

Expressions:

● Var
○ Symbols or Integers
○ Boolean Variables (T/F)

● (NOT expr)
● (AND expr1 expr2)
● (OR expr1 expr2)
● (XOR expr1 expr2)
● (NAND expr1 expr2)
● (ITE expr1 expr2 expr3)

○ If-Then-Else
● (LET var arg body)

○ Var is a variable
○ Arg and Body are both expressions
○ Binds variable to the argument within the body

Boolean Satisfiability Problems

The Boolean Satisfiability problem comes down to
the question:

Is there some truth assignment to the inputs
of an expression that makes it true.

Expressible in Conjunctive Normal Form (CNF)

K-SAT is a subset of boolean satisfiability problems
wherein the number of literals is no greater than K.

Every boolean satisfiability problem can be reduced
to 3-SAT. However this may not maintain
equivalence with the original expression.

Satisfiable: (!X + !Y)

X is False || Y is False

Unsatisfiable: (X) & (Y) & (!X + !Y)

Verification Approaches:

How Close does it get us?

● Proves correctness for input expressions

Downsides

● Execution time increases exponentially with
number of variables.

● Needs to be re-run for every test
● 2n different variable combinations

Verification Approach:

Testing

● Proves correctness for all possible variable
combinations.

● Proves correctness for input expressions
● Execution time and size increases

exponentially with number of variables.
● Needs to be re-run for every test.

BDD

● Proves correctness of the transformation
algorithm itself.

● Proves correctness for all possible input
expressions

● Only needs to be executed once

● Requires substantial human effort.Proof

The Four Passes

Pass 1: Convert to Nand

Beta-Reduction, Alpha-Conversion, Sets,
Genvar, Semantics + Structure, Custom
Induction scheme

Pass 2: Spinal Alignment

Semantics + Structure, Induction scheme

Pass 3: Lambda Abstraction “Evisceration”, “Reconstruction”,
Lambda-Bindings, Semantics + Structure

Pass 4: Reduction to SAT Semantics + Structure

The 4 Passes Necessary Proofs

Commutative Diagram

Initial State First Pass Second Pass Third Pass

Conservation
of Semantics

Expr-Eval Expr-Eval Expr-Eval Expr-Eval Expr-Eval

Expression Convert-to-
Nand

Beta-
Reduction

Lambda
Abstraction

K-Sat
Transform

Fourth Pass

Proof Approaches

● Induction
○ Simple
○ Merged
○ Custom

● Congruences
○ Some proofs resisted

induction
○ Congruence was used

to simplify the
environment

The Environment:

Equivalence of
values

Commutation
&
Overwrite

Equivalence of
Environments

Proof Approaches

● Induction
○ Simple
○ Merged
○ Custom

● Congruences
○ Some proofs resisted

induction
○ Congruence was used

to simplify the
environment

Sets
● My set library primarily utilized

quantification over
membership or member count
○ Subset
○ Disjoint
○ No-Duplicates
○ Sub-Bag

● Most proofs revolved around
list operations and how they
worked under quantification
○ Member
○ Cons
○ Append
○ Remove

The Rule Classes

I primarily utilized 4 rule classes:

1. Rewrite

2. Congruence

3. Forward-Chaining

4. Linear

● Rewrite
○ Allows the theorem prover to rewrite

statements that are an exact syntactic
pattern match.

● Congruence
○ Allows the prover to treat certain

equivalence-predicates as equalities.
Special type of rewrite.

Rule Classes cont. ● Forward-Chaining
○ Adds information to the prover

extending the information available
during the proving process.

● Linear
○ Provides rewrite rules for the prover

to use during linear arithmetic.

ACL2 Tools

● :monitor
○ Identify when and why a rule was,

or was not being applied during a
theorem

● (verify)
○ See what information has been

added by forward-chaining.
○ Figure out which rules apply to

different terms.
○ Figure out which hypothesis are

not being satisfied.

● :useless-runes
○ I wrote several rules which proved

to be useless in many cases.
○ By disabling useless rules I

significantly increased the speed
of execution.

Conclusion

● I found many parts of the project particularly challenging
○ Parsing failed proofs
○ Predicting necessary lemmas

● The discrete math course I had taken at coe was the most useful in
understanding how to utilize ACL2.

● This project was not a formal educational experience in using ACL2
○ Lacked repetition in using some proof methods and terms
○ Many challenges came about at unexpected times

● Biggest Takeaways
○ Understanding simplification

Failed Proofs:

The failed proofs tend to be large
strings of logic.

This is an error for a theorem that
occurs when the theorem prover lacks
information about the transitivity of
subset.

In my experience, the difficulty of
using ACL2 is knowing what
information the theorem prover is
lacking.

Conclusion

● I found many parts of the project particularly challenging
○ Parsing failed proofs
○ Predicting necessary lemmas

● The discrete math course I had taken at coe was the most useful in
understanding how to utilize ACL2.

● This project was not a formal educational experience in using ACL2
○ Lacked repetition in using some proof methods and terms
○ Many challenges came about at unexpected times

● Biggest Takeaways
○ Understanding simplification

Enhancements? ● I found that I frequently found myself
writing rules which “restricted” usage of
those quantifiers whenever a negated
instance of the quantifier was present.

● Ideally, I would just use :expand. However
expand fails whenever the definitions are
disabled.

End of Presentation

