Extended Abstract:
Mutable Objects with Several
Implementations

Matt Kaufmann (speaker)
Yahya Sohail
Warren A. Hunt, Jr.

UT Austin

May 12, 2025

1/9

YET ANOTHER STOBJ] DEVELOPMENT

» Single-threaded objects, or stobjs, support efficient
execution.

» These are mutable objects with syntactic restrictions that
allow for a purely functional semantics.

» This talk will try not to assume experience with stobjs.
For more background:

» See :DOC stobj about concrete stobjs; and
» see :DOC defabsstobj about abstract stobjs.

Also see :DOC attach-stob;.

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____STOBJ
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____STOBJ
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFABSSTOBJ
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ATTACH-STOBJ

MOTIVATION

The x86 model has been used to boot Linux and run Linux jobs.

» Different applications can perform best with different
memory models.
» One solution might be to edit the x86 books to include
different memory models. But:
» we may need to prove the same theorem repeatedly for
different memory models (e.g., read-over-write).
» It would be great to have one logical memory model
supported by different executions.
Of course, applications other than x86 could have similar
issues.

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____X86ISA

EXAMPLE

100,000 writes to a memory model.

Memory Benchmark Time (secs) Size (bytes)

symmetric low 2.75 2000085072
symmetric high 2.75 2000085072
asymmetric low 0.00 6663495760
asymmetric high 87.91 6666641488
attached low 0.00 6899818576
attached]ﬁgh 89.04 6902964304
77777 symmetric: ———-—-—
(include-book "centaur/bigmems/bigmem/bigmem" :dir :system)
77777 asymmetric: ———--
(include-book "centaur/bigmems/bigmem-asymmetric/bigmem-asymmetric"
:dir :system)
77777 attached: —-———-
(include-book "centaur/bigmems/bigmem-asymmetric/bigmem-asymmetric"

:dir :system)
(attach-stobj bigmem: :mem bigmem-asymmetric: :mem)
(include-book "centaur/bigmems/bigmem/bigmem" :dir :system)

symmetric: Include "bigmem"

asymmetric: Include "bigmem-asymmetric"

attached:
Include "bigmem—-asymmetric"

(attach-stobj bigmem: :mem bigmem—-asymmetric:

Include "bigmem"

(in-package "BIGMEM-ASYMMETRIC")
(acl2::defabsstobj mem ...
:exports ((read-mem :logic read-mem$a ...)
(write-mem :logic write-mem$a ...))

(in-package "BIGMEM")
(acl2::defabsstobj mem
rattachable t
:exports ((read-mem :logic read-mem$a ...)
(write-mem :logic write-mem$a ...)))

:mem)

BENEFITS OF ATTACH-STOBJ

» Saves proof work:
Several models can be used without replicating proofs.

» Theorems (e.g., read-over-write) are proved only for the
attachable stob;.

» Saves certification and replication:
A single book can use several models for execution.

» Certify gen.1lisp, which introduces an attachable
(generic) stobj, gen.

» Certify an application book, app . 11isp, that includes
gen.lisp.

» Now we can run that application with different
implementations:

» include a book impl;. 1isp introducing an implementation
stobj impl; together with (attach-stobj gen impl;);
then

» include app.lisp.

» The performance hit is minor.

6/9

AN IMPLEMENTATION CHALLENGE

Suppose app . lisp includes gen.lisp butnot impl.lisp.

Certify all books and then evaluate the following sequence of events.
1. (include-book "impl") ; defines implementation stobj impl
2. (attach-stobj gen impl)

3. (include-book "gen") ; defines attachable stobj gen

(

4. (include-book "app") ; defines function foo

Also suppose we have the following.
» (defabsstob]j gen .. rexports ((E .. rexec Egen)))
» (defabsstobj impl .. rexports ((.. rexec Eimpl)))
» (defun foo (gen) (declare ..) (E gen)) ; from app.lisp

E is a macro, so the compiled code for foo from "app" calls Ege.
But after #1-4 above (note attach-stobj call), foo should call Ejyyp;.

Solution: ACL2 tracks functions like foo and compiles them while
including the book (ignoring the compiled code from certification).

FURTHER READING

See :DOC attach-stobj for usage details.

See community books directory demos/attach-stobj/ for a
worked example, starting with file README . t xt.

Performance testing (discussed on preceding slides) is in
subdirectory mem-test/ of that directory.

And of course, see the paper, which in particular discusses:

» the use of keyword argument :non-executable t to
save space; and

» some tricky implementation issues.

For details, see the 664-line “Essay on Attachable Stobjs” in
ACL2 source file basis-b.1isp.

8/9

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ATTACH-STOBJ

CONCLUSION

» A key design goal for ACL2 is for it to serve as a
programming language that executes efficiently.

» Stobjs provide significant support for efficient execution.

» Abstract stobjs and nested stobjs provide added flexibility.
» Example: x86 model

» Attach-stobj is another step towards flexible support
for efficient execution.

We thank:
» Sol Swords for helpful design feedback;
» ForrestHunt, Inc. for supporting that implementation;
» the reviewers for helpful feedback on this paper; and
» you, for listening.

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFABSSTOBJ
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____NESTED-STOBJS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ATTACH-STOBJ

