
Extended Abstract:
Mutable Objects with Several

Implementations

Matt Kaufmann (speaker)
Yahya Sohail

Warren A. Hunt, Jr.

UT Austin

May 12, 2025

1/9

YET ANOTHER STOBJ DEVELOPMENT

▶ Single-threaded objects, or stobjs, support efficient
execution.

▶ These are mutable objects with syntactic restrictions that
allow for a purely functional semantics.

▶ This talk will try not to assume experience with stobjs.
For more background:
▶ See :DOC stobj about concrete stobjs; and
▶ see :DOC defabsstobj about abstract stobjs.

Also see :DOC attach-stobj.

2/9

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____STOBJ
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____STOBJ
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFABSSTOBJ
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ATTACH-STOBJ

MOTIVATION

The x86 model has been used to boot Linux and run Linux jobs.
▶ Different applications can perform best with different

memory models.
▶ One solution might be to edit the x86 books to include

different memory models. But:
▶ we may need to prove the same theorem repeatedly for

different memory models (e.g., read-over-write).

▶ It would be great to have one logical memory model
supported by different executions.

Of course, applications other than x86 could have similar
issues.

3/9

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____X86ISA

EXAMPLE
100,000 writes to a memory model.

Memory Benchmark Time (secs) Size (bytes)
symmetric low 2.75 2000085072
symmetric high 2.75 2000085072
asymmetric low 0.00 6663495760
asymmetric high 87.91 6666641488

attached low 0.00 6899818576
attached high 89.04 6902964304

----- symmetric: -----
(include-book "centaur/bigmems/bigmem/bigmem" :dir :system)
----- asymmetric: -----
(include-book "centaur/bigmems/bigmem-asymmetric/bigmem-asymmetric"

:dir :system)
----- attached: -----
(include-book "centaur/bigmems/bigmem-asymmetric/bigmem-asymmetric"

:dir :system)
(attach-stobj bigmem::mem bigmem-asymmetric::mem)
(include-book "centaur/bigmems/bigmem/bigmem" :dir :system)

4/9

symmetric: Include "bigmem"
————————————————————
asymmetric: Include "bigmem-asymmetric"
————————————————————
attached:
Include "bigmem-asymmetric"
(attach-stobj bigmem::mem bigmem-asymmetric::mem)
Include "bigmem"
————————————————————
(in-package "BIGMEM-ASYMMETRIC")
(acl2::defabsstobj mem ...

:exports ((read-mem :logic read-mem$a ...)
(write-mem :logic write-mem$a ...)) ...)

(in-package "BIGMEM")
(acl2::defabsstobj mem ...

:attachable t ...
:exports ((read-mem :logic read-mem$a ...)

(write-mem :logic write-mem$a ...)))
5/9

BENEFITS OF ATTACH-STOBJ
▶ Saves proof work:

Several models can be used without replicating proofs.
▶ Theorems (e.g., read-over-write) are proved only for the

attachable stobj.
▶ Saves certification and replication:

A single book can use several models for execution.
▶ Certify gen.lisp, which introduces an attachable

(generic) stobj, gen.
▶ Certify an application book, app.lisp, that includes

gen.lisp.
▶ Now we can run that application with different

implementations:
▶ include a book impli.lisp introducing an implementation

stobj impli together with (attach-stobj gen impli);
then

▶ include app.lisp.

▶ The performance hit is minor.
6/9

AN IMPLEMENTATION CHALLENGE
Suppose app.lisp includes gen.lisp but not impl.lisp.

Certify all books and then evaluate the following sequence of events.
1. (include-book "impl") ; defines implementation stobj impl
2. (attach-stobj gen impl)
3. (include-book "gen") ; defines attachable stobj gen
4. (include-book "app") ; defines function foo

Also suppose we have the following.
▶ (defabsstobj gen .. :exports ((E .. :exec Egen)))
▶ (defabsstobj impl .. :exports ((.. :exec Eimpl)))
▶ (defun foo (gen) (declare ..) (E gen)) ; from app.lisp

E is a macro, so the compiled code for foo from "app" calls Egen.

But after #1-4 above (note attach-stobj call), foo should call Eimpl.

Solution: ACL2 tracks functions like foo and compiles them while
including the book (ignoring the compiled code from certification).

7/9

FURTHER READING
See :DOC attach-stobj for usage details.

See community books directory demos/attach-stobj/ for a
worked example, starting with file README.txt.

Performance testing (discussed on preceding slides) is in
subdirectory mem-test/ of that directory.

And of course, see the paper, which in particular discusses:
▶ the use of keyword argument :non-executable t to

save space; and
▶ some tricky implementation issues.

For details, see the 664-line “Essay on Attachable Stobjs” in
ACL2 source file basis-b.lisp.

8/9

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ATTACH-STOBJ

CONCLUSION
▶ A key design goal for ACL2 is for it to serve as a

programming language that executes efficiently.
▶ Stobjs provide significant support for efficient execution.
▶ Abstract stobjs and nested stobjs provide added flexibility.

▶ Example: x86 model

▶ Attach-stobj is another step towards flexible support
for efficient execution.

We thank:
▶ Sol Swords for helpful design feedback;
▶ ForrestHunt, Inc. for supporting that implementation;
▶ the reviewers for helpful feedback on this paper; and
▶ you, for listening.

9/9

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFABSSTOBJ
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____NESTED-STOBJS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ATTACH-STOBJ

