
Verifying Quantum Fourier Transform Using Bit-
Vector Abstractions
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Rotational Abstraction: QFT
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Rotational Abstraction: QFT
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QFT Verification Results 

Verification Time [seconds]
#Qubits Correct Circuit Control Gate Error Incorrect Gate Error

128 0.04s 0.02s 0.04s

256 0.19s 0.08s 0.06s
512 0.26s 0.2s 0.2s

1,024 1.37s 1.29s 0.92s
2,048 9.85s 9.47s 5.87s

4,096 95.75s 79.68s 53.57s
8,192 1109.0s 639.57s 643.9s

10,000 2379.88s 1524.65s 1568.79s
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implementations must scale logarithmically with graph
size.
Many of the currently proposed ‘natural’ physical im-

plementations of quantum walks [12, 13, 14, 15] cannot
achieve this, as the walks evolve on nodes that are imple-
mented by physical states, on which operations are di-
rectly performed. Hence the resource requirements grow
polynomially with the state space. In order to achieve
an exponential gain, the nodes need to foremost be en-
coded by a string of entangled states, such as qubits in
a quantum computer, making use of memory that grows
exponentially with the number of qubits. In addition,
the number of elementary gates required to perform the
walk needs also grow logarithmically with the size of the
state space.
So far, this has only been found to be possible for struc-

tures with a high degree of symmetry - where symmetry
in this case refers to the ability to characterize the struc-
ture by a small number of parameters, increasing at most
logarithmically with the number of nodes. Note that this
may not necessarily imply that the structure has geomet-
ric or combinatorial symmetry in the typical sense of the
terms. For instance, sparse graphs with efficiently com-
putable neighbors fall into this category, and as a con-
sequence of [16, 17] have been shown to allow efficient
implementations of quantum walks. Here sparse graphs
of order n are defined as in [16] to have degree bounded by
O(polylog(n)), with the further condition that the neigh-
bors of each vertex are efficiently computable. Possess-
ing efficiently computable neighbors implies the existence
of an O(log(n)) sized function characterizing the graph,
such that the information contained in the O(n) edges
can be compressed to size O(log(n)). This compression
seems to require the presence of some kind of structure to
the system, for example, the graph cannot contain more
than O(log(n)) completely random edges. An interest-
ing open question is whether sparse graphs can have no
automorphisms apart from the identity.

III. EFFICIENT QUANTUM CIRCUIT
IMPLEMENTATION

In this section, we give examples of a few such graphs
for which relatively simple quantum circuits can be de-
signed to efficiently implement quantum walks along
them. Firstly, we will look at a simple cycle. To im-
plement a quantum walk along it, we first note that
each node has two adjacent edges, and hence two subn-
odes. Proceeding systematically around the cycle, we as-
sign each node a bit-string value in lexicographic order,
such that adjacent nodes are given adjacent bit-strings.
For a cycle of order 2n, n qubits are required to encode
the nodes, and an additional qubit to encode the subn-
odes. The coin operation can be implemented by a sin-
gle Hadamard gate acting on the subnode qubit, and the
shifting operation by a cyclic permutation of the node
states, in which each state (or bit-string) is mapped to

an adjacent state (either higher or lower depending on
the value of the subnode qubit).
This permutation can be achieved via ‘increment’ and

‘decrement’ gates, shown in Figure 1, made up of gen-
eralized CNOT gates. These gates produce cyclic per-
mutations (in either direction) of the node states. The
resulting shifting operator is S = (Incr.⊗|1〉+Decr.⊗|0〉).
Here the tensor space description separates the node and
subnode states. So to implement a walk along a cycle of
size 2n we require n+1 qubits. O(n) additional ancillary
qubits may also be required for the generalized CNOT
gates involved in the cyclic permutations, depending on
the specific implementation used. The number of ele-
mentary gates required is limited to O(n), hence both
memory and resource requirements scale logarithmically
with graph size. An example of the circuit for a cycle
of size 16 is given in Figure 2. Note that although this
specific implementation requires a cycle of order 2n, only
trivial alterations are required to efficiently implement
cycles of any size. For instance, an equivalent circuit for
a cycle of size 25 is given in Figure 3.
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FIG. 1: Increment and decrement gates on n qubits, produc-
ing cyclic permutations in the 2n bit-string states.
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FIG. 2: Quantum circuit implementing a quantum walk along
a 16-length cycle.
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FIG. 3: Quantum circuit implementing a quantum walk along
a 25-length cycle.
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Quantum Walk Verification Results 

Verification Time [seconds]
#Qubits Correct Circuit Control Gate Error Incorrect Gate Error

128 0.41s 0.25s 0.19s

256 1.48s 0.86s 0.56s
512 4.26s 2.97s 2.10s

1,024 38.49s 10.18 36.84s
2,048 1,186.69s 40.81s 213.31s

4,096 10,486.36s 180.04s 320.45s
5,000 17,184.68s 286.20s 2,099.02s



What We 
Propose To Do



Verified 
Generators 
Using ACL2

1. Unify Rotational Abstraction 
and Superposition Abstraction

2. Analyze commonly used 
circuits for other abstractions.

3. Develop Verified Generators 
in ACL2


