Towards Stirling’s Approximation

Ruben Gamboa

Department of EECS
University of Wyoming
ruben@uwyo.edu

ACL2 Workshop 2025
Austin, TX

ruben@uwyo.edu

Stirling’s Approximation

Note: This talk is about current, ongoing work.

Stirling’s Approximation

Note: This talk is about current, ongoing work.

nl ~+vV2rv/nn"e "

Stirling’s Approximation

Note: This talk is about current, ongoing work.

nl ~+vV2rv/nn"e "

Stirling’s contribution: The constant factor v 27
Standard mathematical proof is to start with

nl~K+vnne™"
and then show K = 27

Stirling’s Approximation

Note: This talk is about current, ongoing work.

nl ~+vV2rv/nn"e "

Stirling’s contribution: The constant factor v 27
Standard mathematical proof is to start with

nl~K+vnne™"
and then show K = 27

One way to show the last part is to use Wallis’s Product Formula for 7 (what this
talk is about)

Wallis’s Product Formula

-2 - (DG

n—=

Wallis’s Product Formula

M)G DEDED

n=1

What we did:

© Necessary improvements to the theory of calculus in ACL2(r)
@® Results and calculations for W(n) £ [sin” x dx

©® Reasoning about W(n)

1. Improvements to Calculus in ACL2(r)

e The theory of calculus (continuity, differentiability, integration) relies on
non-standard analysis, and uses encapsulate to introduce (continuous,
etc.) functions of a single variable

e E.g., “Let f(x) be a continuous function. Then...”

1. Improvements to Calculus in ACL2(r)

e The theory of calculus (continuity, differentiability, integration) relies on
non-standard analysis, and uses encapsulate to introduce (continuous,
etc.) functions of a single variable

e E.g., “Let f(x) be a continuous function. Then...”

¢ |n calculus textbooks, we generalize this to multivariabe functions by “holding
other variables constant”

* In ACL2, this is accomplished by using pseudo-lambda expressions with
functional instantiation:

(:functional-instance ftc-2
(f (lambda (x) (g x vy)))

¢ But this is not allowed in ACL2(r) — with good reason!

1. Improvements to Calculus in ACL2(r)

(:functional-instance ftc-2
(f (lambda (x) (g x y)))

But this is not allowed in ACL2(r) — with good reason!

This is a longstanding issue
We’ve done ad hoc solutions in the past

e Custom version of needed theorems for Taylor Series
e Custom (and complex-valued) version of needed theorems for Fundamental
Theorem of Algebra

¢ Now weve adopted the “context” solution from the FTA proof in ACL2(r)

1. More Improvements to Calculus in ACL2(r)

¢ Integration by Parts
b b
/ udv = uv|g/ vdu
a a

¢ This follows “trivially” from the chain rule (previously done in ACL2(r))

2. The Wallis Integral

W(n)é/ sin” x dx
0

e Using FTC-2:
° W(0)= [ysin’xdx=n
°* W(1)= [y sin' xdx =2

2. The Wallis Integral

W(n)é/ sin” x dx
0

e Using FTC-2:
° W(0)= [ysin’xdx=n
°* W(1)= [y sin' xdx =2

e Using integral-rifn-small-<=-integral-rifn-big:
o W(n+1) < W(n)

2. The Wallis Integral

W(n)é/ sin” x dx
0

e Using FTC-2:
° W(0)= [ysin’xdx=n
°* W(1)= [y sin' xdx =2

e Using integral-rifn-small-<=-integral-rifn-big:
o W(n+1) < W(n)

¢ Using Integration by Parts:
* W(n)="1W(n-2)

2. The Wallis Integral

s s
/ sin" x dx = / sin” 1 x sin x dx
0 0

= (sin" " x)(— cosX)’;r — / (— cos x) ((n— 1)sin"2 x cosx) dx
0
=(n- 1)/ sin2 x cos? x dx
0
=(n- 1)/ sin2 x (1 — sinzx) ax
0
=(n- 1)/ sin™2 x dx — (n— 1)/ sin” x dx
0 0

2. The Wallis Integral

So,

n/ sin”xdx:(n—1)/ sin™2 x dx
0 0

and

T n—1 T 5
/ sin" x dx = / sin™% x dx
0 n Jo

3. Reasoning about W(n)

(defun wallis-expansion (n)

(if (zp n)
(acl2-pi)
(if (equal n 1)
2
(» (/ (= n 1) n)

(wallis—expansion (= n 2)))))

(defun wallis-factor (n)
(if (and (integerp n)

(<= 2 n))
(» (/ (= n 1) n)
(wallis—-factor (- n 2)))

1))

;7 (wallis—factor 10) => (= 9/10 7/8 5/6 3/4 1/2)
;;; (wallis—factor 11) => (% 10/11 8/9 6/7 4/5 2/3)

3. Reasoning about W(n)

(defthm wallis-expansion-for-evens
(implies (and (natp n) (evenp n))
(equal (wallis-expansion n)
(+ (acl2-pi)
(wallis—-factor n)))))

(defthm wallis-expansion-for-odds
(implies (and (natp n) (not (evenp n)))
(equal (wallis-expansion n)
(x 2
(wallis—-factor n)))))

(defthmd wallis—-as-wallis—-expansion
(implies (natp n)
(equal (wallis n)
(wallis—-expansion n))))

3. Reasoning about W(n)

(defthmd wallis-triple-bounds
(implies (and (natp n) (<= 2 n))
(and (<= (wallis (1+ n))
(wallis n))
(<= (wallis n)
(

wallis (1- n))))))

(defthmd wallis-squeeze-bounds
(implies (and (natp n) (<= 2 n))
(and (<=1
wallis n)

wallis (1+ n))))

wallis (14 n)

(
(
(<= (/ (wallis n)
(
(1+ n) nj)))))

3. Reasoning about W(n)

(defthmd wallis-quotient-asymptotic
(implies (and (natp n) (i-large n))
(equal (standard-part (/ (wallis n)
(wallis (14 n))))
)

(defthmd wallis-quotient—-asymptotic-2
(implies (and (natp n) (i-large n))
(equal (standard-part (/ (wallis n)
(wallis (1- n))))
1))

3. Reasoning about W(n)

(defthm wallis-product—lemma
(implies (and (natp n)
(not (evenp n))
(i-large n))
(equal (standard-part (/ (wallis-factor n)
(wallis-factor (1- n))))
(/ (acl2-pi) 2))))

3. Reasoning about W(n)

(defun wallis-product (n)
(if (zp n)
1
(x (/ (x 2 n) (1- (x 2 n)))
(/ (x 2 n) (1+ (x 2 n)))
(wallis—-product (1- n)))))

(defthm wallis-product-lemma-1
(implies (natp n)
(equal (wallis-product n)
(/ (wallis—-factor (1+ (x 2
(wallis—factor (* 2 n))

n)))
)

))))

3. Reasoning about W(n)

(defthm wallis-product-convergence
(implies (and (natp n)
(i-large n))
(equal (standard-part (wallis-product n))
(/ (acl2-pi) 2)))

Lagniappe

ACL2 (r) !'>(x 2 (wallis-product 10))
137438953472/44801898141

Lagniappe

(defun df-wallis-product (n)

(if (zp n)
(to-df 1)
(dfx (df/ (dfx 2 (to-df n))
(df- 1 (dfx 2 (to—-df n))))
(df/ (dfx 2 (to-df n))
(df+ 1 (dfx 2 (to-df n))))
(df-wallis-product (1- n)))))

Lagniappe

ACL2 (r) !> (dfx 2 (df-wallis-product 10))
#d3.067703806643497

Lagniappe

ACL2 (r) !> (dfx 2 (df-wallis-product 10))
#d3.067703806643497

ACL2 (r) !> (dfx 2 (df-wallis-product 100))
#d3.133787490628159

Lagniappe

ACL2 (r) !> (dfx 2 (df-wallis-product 10))
#d3.067703806643497

ACL2 (r) !> (dfx 2 (df-wallis-product 100))
#d3.133787490628159

ACL2 (r) !> (dfx 2 (df-wallis-product 1000))
#d3.1408077460303865

Lagniappe

ACL2 (r) !> (dfx 2 (df-wallis-product 10))
#d3.067703806643497

ACL2 (r) !> (dfx 2 (df-wallis-product 100))
#d3.133787490628159

ACL2 (r) !> (dfx 2 (df-wallis-product 1000))
#d3.1408077460303865

ACL2 (r) !> (dfx 2 (df-wallis-product 10000))
#d3.1415141186818567

