
An Embedding of the Python
Type System in ACL2s

Samuel Xifaras, Panagiotis Manolios, Andrew T. Walter,
William Robertson

May 13, 2025

What is Python?

● First released in 1991
● Second most popular language in the world (behind

JavaScript)
● Powers the modern world: data science, machine

learning, SaaS companies
● Thriving community and rich ecosystem of open source

packages
● Not statically typed
● Verifiably correct Python code is becoming

increasingly important

What are Type Annotations?

● Introduced to Python in 2014, in PEP-484
● Static typing has many benefits:

○ Improved modularity and earlier catching of simple bugs (Siek, 2014)
○ Reduced development time for certain categories of tasks (Hanenberg et al., 2014)

● Type annotations are growing in popularity in recent years (Di Grazia
and Pradel, 2022)

● Effectively erased at runtime; not enforced

Static Type Checkers

● Type annotations enforced by type checkers: e.g.: mypy, pytype
● Often integrated into CI/CD workflows
● Empirical study shows that mypy and pytype emit many false alarms (false

positives)
○ Rak-amnouykit et al., 2020

● Rak-amnouykit et al. find that many repositories contain statically detectable errors
● Roth finds that Python's type hints are Turing complete (Roth, 2022)

Problem: Type checking is undecidable, hence cannot be sound & complete, and emits
false positives and negatives

Motivating Example

def average(xs: List[float]) -> float:
 return sum(xs) / len(xs)

Motivating Example

● Type checking passes!
def average(xs: List[float]) -> float:
 return sum(xs) / len(xs)

Motivating Example

● Type checking passes!
● What if xs is empty? def average(xs: List[float]) -> float:

 return sum(xs) / len(xs)

Motivating Example

● Type checking passes!
● What if xs is empty?
● What if xs[0] is NaN?

def average(xs: List[float]) -> float:
 return sum(xs) / len(xs)

Motivating Example

● Type checking passes!
● What if xs is empty?
● What if xs[0] is NaN?

● Type system is not
expressive enough to
express desired
inputs/outputs

def average(xs: List[float]) -> float:
 return sum(xs) / len(xs)

average([]) # raises ZeroDivisionError

average([float('nan'), 3.0]) # nan

Motivating Example

● Type checking passes!
● What if xs is empty?
● What if xs[0] is NaN?

● Devs often try to make up
for this with assert

def average(xs: List[float]) -> float:
 assert len(xs) > 0
 return sum(xs) / len(xs)

average([]) # raises AssertionError

average([float('nan'), 3.0]) # nan

Motivating Example

● Type checking passes!
● What if xs is empty?
● What if xs[0] is NaN?

● Devs often try to make up
for this with assert

● But this doesn't solve the
problem

def average(xs: List[float]) -> float:
 assert len(xs) > 0
 return sum(xs) / len(xs)

average([]) # raises AssertionError

average([float('nan'), 3.0]) # nan

Motivating Example

● Type checking passes!
● What if xs is empty?
● What if xs[0] is NaN?

● Devs often try to make up
for this with assert

● But this doesn't solve the
problem

def average(xs: List[float]) -> float:
 assert len(xs) > 0
 return sum(xs) / len(xs)

average([]) # raises AssertionError

average([float('nan'), 3.0]) # nan

Type checking cannot catch such issues
Easy to miss edge cases in unit testing

A third, complementary approach is needed

Our Approach: Type Hint Fuzzing

● Fuzz annotated functions in code, automatically supplying correct inputs
according to parameter type annotations

● Catch crashes thrown by the code-under-test which indicate problematic
behavior and type mismatches in the return values of functions.

● An autonomous "sanity check" that code works as expected given information
about the types

Every issue is accompanied by a counterexample that can reproduce it, solving
the false alarm problem.

ACL2s

Atheris

ACL2s

Atheris

this paper

this paper

ACL2s Systems Programming*

* Walter and Manolios, 2022

Why ACL2s?

● Theorem prover with a type system and data definition framework
○ Dillinger, Manolios, Moore, and Vroon, 2007
○ Chamarthi, Dillinger, and Manolios, 2014

● We leverage ACL2s for its data definition capabilities, and enumerative data types
○ We also leverage the ability to define custom enumerators

● Integration with ACL2s may allow the fuzzing system to leverage theorem proving in the
future

Custom Enumerators for Primitive Types

● Integers
○ Arbitrary precision in both Python and ACL2s
○ Enumerator: covers small, large values, powers of 2 and values close to powers of 2

● Floats
○ Several special values that might be easy to neglect in manual test cases: -0, nan, -inf, inf
○ Encoded as rational numbers to leverage the Integer enumerator
○ Enumerator: p/q where p, q are integers + very large, very small, special cases

● Strings
○ The string type is embedded as a sequence of 32-bit integers (which we decode into Unicode

chars)
○ Enumerator: length up to 10^4, mixture of various code point ranges (Greek letters, math

symbols, emojis, diacritics, etc.)

Embedding Complex Types
● User-defined types can be admitted if

they are recursively representable

float int list[T]

Embedding Complex Types
● User-defined types can be admitted if

they are recursively representable

float int list[T]

TestClassA

list[int]

Embedding Complex Types
● User-defined types can be admitted if

they are recursively representable

float int list[T]

TestClassA

list[int]

TestClassB

TestClass{A, B} Defdata Calls

● Defdata calls emitted
when analyzing entire file

● Note that the complex
return annotation types
on use_a and use_b are
also admitted

● TY1100 is the ID of the
TestClassB type

;; Layer 0 (primitive definitions)
(DEFDATA TY1039 PY-INTEGER) ;; int
(DEFDATA TY1041 PY-FLOAT) ;; float

;; Layer 1: List[int] & TestClassA
(DEFDATA TY1043 (LISTOF TY1039)) ;; List[int]
(DEFDATA TESTCLASSA
 (RECORD (A . TY1041) (B . TY1043))

;; Layer 2: TestClassB
(DEFDATA TESTCLASSB
 (RECORD (A . TY1039) (B . TESTCLASSA))

;; Return types

;; Tuple[float, List[int]]
(DEFDATA TY1096 (LIST TY1041 TY1043))

;; Tuple[int, TestClassA]
(DEFDATA TY1100 (LIST TY1039 TESTCLASSA))

TestClassB JSON Payload
[
 [
 { "TYPE": "sym", "PACKAGE": "KEYWORD", "NAME": "0TAG" },
 { "TYPE": "sym", "PACKAGE": "ACL2S", "NAME": "TESTCLASSB" }
],
 [
 { "TYPE": "sym", "PACKAGE": "KEYWORD", "NAME": "A" },
 { "TYPE": "int", "VAL": "-281474976743424" }
],
 [
 { "TYPE": "sym", "PACKAGE": "KEYWORD", "NAME": "B" },
 [
 { "TYPE": "sym", "PACKAGE": "KEYWORD", "NAME": "0TAG" },
 { "TYPE": "sym", "PACKAGE": "ACL2S", "NAME": "TESTCLASSA" }
],
 [
 { "TYPE": "sym", "PACKAGE": "KEYWORD", "NAME": "A" },
 { "TYPE": "rat", "N": "14", "D": "134217729" }
],
 [
 { "TYPE": "sym", "PACKAGE": "KEYWORD", "NAME": "B" },
 { "TYPE": "int", "VAL": "576460752303489024" },
...

name of class

field a = -281474976743424

field b = instance of TestClassA

Real-world example: _Arguments

Embedding of Complex Type: _Arguments

bool str

pre-embedded primitive types

list[T]

parametric type

Embedding of Complex Type: _Arguments

bool str list[T]

list[str]

_Arguments

Real-world example: Detected Issue

● Embedding of this class type allowed us to
detect an error in its definition

● It is given as the return type for
mypy.stubtest.parse_options

● Fuzzing experiments in Xifaras's MS Thesis
revealed imprecise annotations for two of the
class's fields (Xifaras, 2024)

● This change was proposed and accepted in
the mypy repository

Evaluation

● Goal: "sanity check" that enumerators generate examples that cover code
we would expect to cover

● Extracted "appropriate functions" from four open source repositories
● Performed five independent trials of 440-second fuzzing campaigns
● All examples generated by ACL2s enumerators
● Measured code coverage with coverage.py

Appropriate Functions

● A function is appropriate iff its signature is 1) fully annotated and 2) every
annotation in the signature is registered in the embedding

● A signature is fully annotated iff all arguments and return type are annotated

Evaluation Results

Example of good coverage

● Basic blocks
● Easy conditionals
● Makes sense that

we should cover
this based on
knowledge of
types

Example 1 of bad coverage

● Complex conditional: unlikely that a randomly generated string would start
and end with "__"

Example 2 of bad coverage

● Filesystem dependency

Example 3 of bad coverage

● Vague type annotation

Discussion

● Our code coverage is good, given black-box function bodies
● We fail where we expect to fail:

○ Complex conditionals
○ File system dependencies
○ Vague type annotations

● Xifaras discusses the larger system this embedding is a part of (Xifaras,
2024)

Embedding

● Expand set of supported types
○ Generics, co/contravariance, Protocol, Iterator, Sequence, etc.

● Embed semantics of commonly used conditional expressions and operators in
ACL2s & use them to generate examples

○ "Enumerative data types with constraints" (Walter, Greve, and Manolios, 2022)
● Long term: embed semantics of Python (?)

Fuzzing System

● Leverage control flow structure of the code to improve code coverage
○ E.g. when fuzzing gets stuck, extract constraints and generate examples that satisfy/unsatisfy

● Property-based testing
● Type repair

Future Work

Related Work

● Type checking in Python: not sound/complete; emits false positives
○ Rak-amnouykit et al., 2020; Di Grazia and Pradel, 2022; Roth, 2022

● Unit testing in Python is lackluster
○ Zhai et al., 2019

● Several attempts to formally specify Python, but they are of a particular
version or particular subset of Python

○ Ranson, 2008; Politz et al., 2013; Smeding, 2009; Köhl, 2021
● Fuzzing in Python has been receiving more attention

○ Li et al., 2023 ("PyRTFuzz"); Zac Hatfield-Dodds, 2022 ("HypoFuzz"); Xifaras, 2024

Thank you!
Questions?

Link to source code: https://github.com/acl2/acl2/tree/master/books/projects/python/embedding
Get in touch! s.xifaras999@gmail.com

https://github.com/acl2/acl2/tree/master/books/projects/python/embedding
mailto:s.xifaras999@gmail.com

