
A Formalization of the Yul Language and
Some Verified Yul Code Transformations

Alessandro Coglio Eric McCarthy

Kestrel
Institute

Workshop 2025

Yul is an intermediate language used in the Solidity compiler.

Solidity compilerSolidity EVM
bytecode

. . .Ethereum
blockchain

executes in
transactions

Yul is an intermediate language used in the Solidity compiler.

EVM
bytecodeSolidity

Solidity compiler

Solidity
to
Yul

Yul YulYul transformations
Yul
to

EVM

Yul is an intermediate language used in the Solidity compiler.

EVM
bytecodeSolidity

Solidity compiler

Solidity
to
Yul

Yul Yul
Yul
to

EVM

Yul transformations

Yul
to
Yul

... ...

A
to
Yul

Yul
to
B

language
B

language
A Yul Yul

Yul
to
Yul

Yul transformations

Solidity compiler

... ...

Yul is an intermediate language used in the Solidity compiler.

Yul = generic core + dialect-specific extensions

only the EVM dialect exists so far
(A = Solidity, B = EVM bytecode)

Yul is a statically typed, block-structured, imperative language.

function f(x) -> (y, z) {
 let a := 1738
 {
 let b // := 0
 let c := ...
 y := mul(a, g(b))
 }
 ...
 z := add(y, x)
 function g(w) -> u { ... }
}

function
declarations

function
inputs

function
outputs

variable
declarations

variable
assignments

EVM dialect
built-in functions

Yul grammar from the Yul documentation:

Yul semi-formal semantics from the Yul documentation:

List of Yul transformations from the Yul documentation:

solc --optimize --ir-optimized
 --yul-optimizations 'dhfoD[xarrscLMcCTU]uljmul:fDnTOcmu'

The exact sequence of
Yul transformations
can be customized.

Not all sequences are valid:
some transformations expect

the code to be in certain forms,
as resulting from applying
previous transformations

Our Yul development in ACL2.

abstract
syntax

Our abstract syntax of Yul consists of algebraic fixtypes.

(fty::deftagsum statement
 (:block ((get block)))
 (:variable-single ((name identifier) (init expression-option)))
 (:variable-multi ((names identifier-list) (init funcall-optionp)))
 (:assign-single ((target path) (value expression)))
 (:assign-multi ((targets path-list) (value funcall)))
 (:funcall ((get funcall)))
 (:if ((test expression) (body block)))
 (:switch ((target expression) (cases swcase-list) (default block-option)))
 (:for ((init block) (test expression) (update block) (body block)))
 (:break ())
 (:continue ())
 (:leave ())
 (:fundef ((get fundef)))
 :pred statementp)

Our Yul development in ACL2.

abstract
syntax

concrete
syntax abstracts to

Our concrete syntax of Yul consists of an ABNF grammar transcribed from the documentation.

statement = block / variable-declaration / assignment / function-call
 / if-statement / switch-statement / for-statement
 / %s"leave" / %s"break" / %s"continue" / function-definition

Which is turned into an ACL2 formal representation via our verified ABNF grammar parser.

We have not yet formalized:
▪ Extra-grammatical syntactic restrictions.
▪ Mapping from concrete to abstract syntax.

But we have developed an executable Yul parser,
which provides a low-level specification of
the extra-grammatical syntactic restrictions
and the mapping from concrete to abstract syntax.

Our Yul development in ACL2.

abstract
syntax

concrete
syntax abstracts to

static
semantics

is defined on

Our static semantics of Yul consists of predicates that perform compiler-like checks,
described informally in the Yul documentation:
▪ Each referenced variable or function is in scope (Yul’s scoping rules are a bit tricky).
▪ Each function is called with the right number of arguments.
▪ ...

(define check-safe-statement ((stmt statementp)
 (varset identifier-setp)
 (funtab funtablep))
 :returns (varsmodes vars+modes-resultp)
 (statement-case
 stmt
 :if
 (b* (((okf results) (check-safe-expression stmt.test varset funtab))
 ((unless (= results 1)) ...) ; error
 ((okf modes) (check-safe-block stmt.body varset funtab)))
 (make-vars+modes :vars (identifier-set-fix varset)
 :modes (set::insert (mode-regular) modes)))
 ...))

variables in scope
functions in scope

updated variables in scope modes of termination

handle other kinds of statements

Our Yul development in ACL2.

abstract
syntax

concrete
syntax abstracts to

static
semantics

is defined on

dynamic
semanticsis defined on

Our dynamic semantics of Yul consists of a big-step defensive interpreter,
based on the one in the Yul documentation.

(define exec-statement
 ((stmt statementp) (cstate cstatep) (funenv funenvp) (limit natp))
 :returns (outcome soutcome-resultp)
 (b* (((when (zp limit)) ...)) ; error
 (statement-case stmt
 :block (exec-block stmt.get cstate funenv (1- limit))
 :leave (make-soutcome :cstate cstate :mode (mode-leave))
 ...))
 :measure (nfix limit))

computation state
(local variables etc.)

function environment
(functions in scope)

artificial limit
for termination

limit exhausted

trivial termination proof

handle other kinds of statements

decrease limit
on recursion

statement outcome =
updated computation state +

termination mode

Our Yul development in ACL2.

abstract
syntax

concrete
syntax abstracts to

static
semantics

is defined on

dynamic
semanticsis defined on

static
soundnessrelates

relates

Our static soundness theorems says that:
if the static semantic checks succeed,
then the corresponding dynamic checks succeed.

(defthm exec-expression-static-soundness
 (b* ((results (check-safe-expression
 expr (cstate-to-vars cstate) (funenv-to-funtable funenv)))
 (outcome (exec-expression expr cstate funenv limit)))
 (implies (and (funenv-safep funenv)
 (not (reserrp results))
 (not (reserr-limitp outcome)))
 (and (not (reserrp outcome))
 (equal (cstate-to-vars (eoutcome->cstate outcome))
 (cstate-to-vars cstate))
 (equal (len (eoutcome->values outcome))
 results)))))

It should hold for an extended dynamic semantics that
nondeterministically chooses any branch regardless of the test value.

Static completeness does not hold for the normal dynamic semantics.

expression is statically safe
execution does not exhaust limitfunction environment

is statically safe

map computation state
to variables in scope

map function environment
to functions in scope

execution does not fail

same variables in scope
after execution expression results

are consistent with
static semantics

Our Yul development in ACL2.

abstract
syntax

concrete
syntax abstracts to

static
semantics

is defined on

dynamic
semanticsis defined on

static
soundnessrelates

relates

transformations

are defined on

How do we ensure that the Yul transformations in the Solidity compiler are correct?

Yul YulYul transformation in C++
(in the Solidity compiler)

Yul transformation in ACL2

𝑇 𝑥, 𝑦 ≜ ⋯ 𝐶 𝑥, 𝑦 ≜ ⋯

⊢ ∀𝑥, 𝑦. 𝑇(𝑥, 𝑦) ⟹ 𝐶 𝑥, 𝑦

𝑇 𝑥, 𝑦 holds exactly when
𝑦 is a valid result of transforming 𝑥

𝐶 𝑥, 𝑦 holds exactly when
𝑦 is correct w.r.t. 𝑥

we prove that
the transformation
is always correct

How do we ensure that the Yul transformations in the Solidity compiler are correct?

Yul YulYul transformation in C++
(in the Solidity compiler)

Yul transformation in ACL2

𝑇 𝑥, 𝑦 ≜ ⋯ 𝐶 𝑥, 𝑦 ≜ ⋯

⊢ ∀𝑥, 𝑦. 𝑇(𝑥, 𝑦) ⟹ 𝐶 𝑥, 𝑦

export

JSON JSON

export

AST 𝑎

convert

AST 𝑏

convert

theorem generation

⊢ 𝐶 𝑎, 𝑏

Our Yul development in ACL2.

abstract
syntax

concrete
syntax abstracts to

static
semantics

is defined on

dynamic
semanticsis defined on

static
soundnessrelates

relates

transformations

are defined on

Disambiguator

function f ... {
 {
 let a
 function g ...
 }
 {
 let a
 function g ...
 }
}

function f ... {
 {
 let a
 function g ...
 }
 {
 let a1
 function g1 ...
 }
}

It renames variables and functions so that they are globally unique,
to facilitate subsequent transformations.

There are many ways to rename variables and functions apart.

We have formalized and verified a few transformations.
The most interesting one is Disambiguator.

We formalized Disambiguator as a relation between old and new code,
which holds when old and new code differ only in variable and function names,
and the variables and functions in the new code have unique names.

Our formalization of Disambiguator consists of four predicates:
▪ Variable renaming over old and new code.
▪ Function renaming over old and new code.
▪ Unique variable names over new code.
▪ Unique function names over new code.

This “isolates” our formalization and proofs from peculiarities of, and changes to,
the variable and function renaming algorithm used in the Solidity compiler.

This is a part of the variable renaming transformation.

(define statement-renamevar ((old statementp) (new statementp) (ren renamingp))
 :returns (new-ren renaming-resultp)
 (statement-case
 old
 :block
 (b* (((unless (statement-case new :block)) ...) ; return error
 ((statement-block new) new)
 ((okf &) (block-renamevar old.get new.get ren)))
 (renaming-fix ren))
 :variable-single
 (b* (((unless (statement-case new :variable-single)) ...) ; return error
 ((statement-variable-single new) new)
 ((okf &) (expression-option-renamevar old.init new.init ren)))
 (add-var-to-var-renaming old.name new.name ren))
 ...))

alist with unique keys and values

possibly updated alist, or error

handle other kinds of statements

same renaming after block

extend renaming

Our Yul development in ACL2.

abstract
syntax

concrete
syntax abstracts to

static
semantics

is defined on

dynamic
semanticsis defined on

static
soundnessrelates

relates

transformations

are defined on

transformation
static

correctness

is based on

proves

We proved that the variable renaming transformation preserves the static semantics,
e.g. if the old statement is statically safe, so is the new statement, and the results agree.

(defthm check-safe-statement-when-renamevar
 (b* ((ren1 (statement-renamevar stmt-old stmt-new ren))
 (varmodes-old (check-safe-statement stmt-old (varset-old ren) funtab))
 (varmodes-new (check-safe-statement stmt-new (varset-new ren) funtab)))
 (implies (and (not (reserrp ren1))
 (not (reserrp varmodes-old)))
 (and (not (reserrp varmodes-new))
 (equal (vars+modes->vars varmodes-old)
 (varset-old ren1))
 (equal (vars+modes->vars varmodes-new)
 (varset-new ren1))
 (equal (vars+modes->modes varmodes-old)
 (vars+modes->modes varmodes-new))))))

old and new statements
related by variable renaming

old statement is safe

results agree

new statement is safe

Our Yul development in ACL2.

abstract
syntax

concrete
syntax abstracts to

static
semantics

is defined on

dynamic
semanticsis defined on

static
soundnessrelates

relates

transformations

are defined on

transformation
static

correctness

is based on

proves
transformation

dynamic
correctness

is based on

proves

We proved that the variable renaming transformation preserves the dynamic semantics,
e.g. if the old and new statement execute without error, the results agree.

(defthm exec-statement-when-renamevar
 (b* ((ren1 (statement-renamevar stmt-old stmt-new ren)))
 (implies (and (not (reserrp ren1))
 (cstate-renamevarp cstate-old cstate-new ren)
 (funenv-renamevarp funenv-old funenv-new))
 (b* ((outcome-old
 (exec-statement stmt-old cstate-old funenv-old limit))
 (outcome-new
 (exec-statement stmt-new cstate-new funenv-new limit)))
 (implies (and (not (reserr-nonlimitp outcome-old))
 (not (reserr-nonlimitp outcome-new)))
 (soutcome-result-renamevarp outcome-old
 outcome-new
 ren1))))))

variable renaming on
computation states

and functions

old and new statements are
related by variable renaming

old and new statement
execute without error

results agree

Should this be a conclusion instead of a hypothesis?

Yes, but we already proved that the transformation preserves the static semantics,
and we know that the static semantics guarantees the absence of execution errors,
because of our general static soundness theorem.

So we can make that a hypothesis, which slightly simplifies the proof,
and combine that with the other theorems to obtain the desired formulation.

We proved that the variable renaming transformation preserves the dynamic semantics,
e.g. if the old and new statement execute without error, the results agree.

(not (reserr-nonlimitp (exec-statement stmt-new cstate-new funenv-new limit)))

transformations

abstract
syntax

concrete
syntax

dynamic
semantics

static
soundness

static
semantics

transformation
dynamic

correctness

transformation
static

correctness

abstracts to is defined on

are defined on

is defined on

relates

relates

is based on

is based on

proves proves

Our Yul development in ACL2.

Status:
▪ Our model of generic Yul is complete, but it could be parameterized better over the dialect.
▪ Our model of the EVM dialect is quite minimal.
▪ Our formalization and verification of Yul transformations has just scratched the surface.

Outlook:
▪ Modeling the EVM dialect is doable but would take significant effort.
▪ Formalizing and verifying all the Yul transformations is doable but would take significant effort.

Some are EVM-dialect-specific.

Remarks:
▪ Even seemingly simple transformations take effort to verify.
▪ The proofs were not difficult but a bit laborious.
▪ Computed hints with (acl2::occur-lst '(acl2::flag-is '...) clause) conditions

were useful to apply different hints to different cases of the large induction proofs.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

