T

"(’.

PRETTY-PRINT
by
Bob Boyer.

Memo No 64

-
T
T
=
-
i
Z
-
O .
L T
£
O
<
._1_,} d
=
=
>
,...)|
@
:,_'/__ .
>
[
R
)
LD
O

R

w

ABSTRACT.

A program for printing list structures in a pretty format'is
described. The program'is fast, does only a little consing, and

is exact.(i.e., uses no heuristics).

a) The amount of consing done by the program is approximately

one cons for every three lines of output.

b) The speed of the program is directly proportionél to the
size of the formula being printed; it takes about three
times as long to pretty-print a formula as it does simply
to print it. (This time is calculated for writing to a

'device! which uses up no time whatsoever.)

c) By exactness I mean that no 'heuriétics' are used; the
program knows precisely how much space every part of the
formula needs for the several varieties of indentation

before anything is printed.

Requirements of a Pretty-Printing Algorithm

Before beginning a description of what I want in a pretty-print program,

" let me make a few simplifying assumptions:

1) No special attention will be paid to things like LAMBDA's,

PROG's or comments.

2) Nothing of the form ((...) ...) is permitted (i.e., we

have always atoms in the function position).
3) Nothing of the form (FOO . BAR) is permitted.

All of these simplifications can be easily removed; .the only reason I

make them is to help keep a complicated discussion a little clearer.

The first requirement in a pretty-print algorithm is that it print
the formula all on one line if it will fit.

The second requirement is that it print the formula with the arguments
dlrectly underneath one another if the formula will not all fit on one line.
The best type of indentation is of the form*

(Foo (BAR1.....a....................)
(BAR2........)
(BARB.;.............))_

That is, with the first argument on the same line as the function symbol.

The other type of indentation is

(Foo

(6:7V: 3 PO)
(BAR2........)

(BAR3..... |)

The third requirement in a pretty-print algorithm'is that if the
second type of indentation must be employed, then the arguments will be

moved as far to the right as possible. Thug

.- (roo
(BAR1..OC.)
(BaR2.....)
(BAR3900.. '))
. is better than the immediately preceding output because the arguments are
indented further. Of course, the only reason that -the second type of
. indentation must be employed is that if the first variety is used, then

the output will go beyond the right-hand margin.

The pretty-print algorithm to be described in this note achieves these
three requirements in the following way:

1) Any sub-formula that can be printed flat (on one line)
is so printed flat, even if that entails the worst
. variety of indentation for the formulas which contain

the sub-formula.

2) Subject to constraint (1) above, if a sub-formula camnot
be printed flat it will be printed with its arguments
indented in the best way or as far over as possible (if
the second type of indentation is necessary). This
indentation will be allowed for the sub-formula even if
it entails the worst variety of indentation for the

formulas which contain the sub-formula.

3) At the very worst, the arguments of each sub-formula will

be indented at least one space further than the sub-formula.

(Unless, of course, the formula simply cannot be
pretty-printed. I have never seen this happen with

a line width of 80 characters.)

The implications of 1, 2 and 3 can be easily apprehended by inspecting

some sample output. See the appendix.

The Pretty-Print Algorithm

The pretty-print algorithm is called PPR. It takes 3 arguments:

MARG! which is the number of spaces you want in the left-hand
margin,

the FMLA to be pretty printed,

and RPARCNT which is the number of characters you want to print
on the last line of the pretty-printed text after the pretty-
print is finished.

No;ﬁally RPARCNT is originally O. The global variable MARG2 is set to the
. maximum number of characters that may be printed on a line. PPR expects
that it can begin outputting immediately: i.e., the print head is positi-
oned where pretty-printing is to begin. PPR does not print a new line
after it is finished. You can still print as many as RPARCNT characters
before exceeding MARG2.

Essenfially, PPR works by making two complete passes through FMIA.
The first pass is made by PPR1 which does no output whatsoever. Instead
PPR1 simply calculates exactly where, what kind of, and how much
indentation is required. The information returned by PPR1 is used by
PPR2 which makes the second pass through FMLA. PPR2 does no calculating
but does all the printing. »

PPR1 returns its answers through four global variables: FLATSIZE,
REMAINDER, STARTLIST, ENDLIST. ’

. FLATSIZE may be a positive integer or false. If it is a positive
integer then it is the number of characters it takes to print FMLA flat;
furthermore FMLA can be printed on one line. if FLATSIZE is a positive
_ integer, then STARTLIST and ENDLIST are of no significance. If FLATSIZE
is false then FMLA cannot be printed on one line and information about

Whére indentation should occur is found in STARTLIST and ENDLIST.

STARTLIST is a list of numbers, Each number is actually a éacked
triple representing three numbers, These numbers describe the kind and

amount of indentation required for each sub-formula with indented arguments,

1) The bottom number is a kind of pointer to the sub-

formula with indented arguments.

2) The middle number is the number of spaces further in

that the arguments are to be indented.

3) The top number is a one bit flag indicating what kind
of indentation is to be used, If the bit is on, then
the first argument is to be printed on the same line
as the function symbol; otherwise the first argument

is to be printed on a new line.

The basic idea is that PPR1 returns an appropriate STARTLIST and that PPR2
will take this list and begin printing the FMLA the way that, say, PRINT
does. But as PPR2 encounters each sub-formula, PPR2 asks whether the
sub-formula is pointed to by the next entry on the STARTLIST. If so,

the sub-formula is printed with its arguments indented according to the
-other information in the first entry on the STARTLIST. If the sub-
formula is pointed to by the first entry on STARTLIST, then STARTLIST is
CIR'd before the arguments are printed (recursively by PPR2 of course).
If the sub-formula is not pointed to by the first entry on the STARTLIST,
it is printed flat. ' '

What kind of pointers are these 'kind of'! pointers? They are the
integers associated with each sub-formula by the depth-first enumeratioxt:+ier
of the sub-formulas of FMLA., Every time we enter PPRT recursively we
increment a global variable GRECCNT by one. The value of GRECCNT on entry
to PPR1 is thought of as pointing to the current sub-formula that PPR1-is
working on. Of course, when we reinitialize GRECCNT to zero and begin
PPRZI (where we also keep uping the count), we know that the next entry on -
STARTLIST points to the current sub-formula if and only if GRECCNT is equal
to the bottom third of the next entry on STARTLIST. GRECCNT is set to
zero before PPR calls PPR1 and before PPR calls PPR2.

_ ENDLIST is merely the last cell of STARTLIST. It is used for fast
NCONCing. ' '

H

REMAINDER is a number. It represeﬁts the number of spaces ¥MLA can
be shoved over towards the right after pretty-printing it. It is from
REMAINDER that we learn whether or not indentation of the best kind is

possible, and, if not, how much indentation of the other kind is possibla.

The Locals of PPR1

PPR1 has a number of arguments and local variables.
The arguments are FMLA and RPARCNT.
FMLA is the current sub-formula we are working on.

RPARCNT is the number of characters wé want to output on the last line
after pretty-printing FMLA. Supposing that the user has not requested any,
then RPARCNT is simply the number of right parentheses that is +to be printed
on the last line after pretty-printing FMLA, i.e.,right parentheées belonging
to formulas of which FMLA is a sub-formula that must be printed on the same
line immediately after FMIA. Any.pretty—print algorithm which ignores this
aspect of pretty-printing is,in my opinion,not exact. The secret to keeping
track of the right parentheses is to call PPR1 recursively with RPARCNT as O
unless you are recursing on the last member of FMLA, in which case you call
PPR1 recursively with RPARCNT as RPARCNT + 1. When eventually the last
member of FMLA is an atom, simply add in RPARCNT when calculating the space
it will take to print the atom. (Actually RPARCNT is one greater than
suggested here.)

A global variable called SPACELEFT ought really to be considered as an
argument of PPR1. SPACELEFT is decremented by one every time we recurse
into PPR1 and incremented by one every time we exit. Hence it does not
have to be local, and we have not made it local. SPACELEFT is initialized
to MARG2-MARG! by PPR before it calls PPR1. Hence SPACELEFT represents
the maximum width of characters that can be available for pretty-printing
FMLA. That is because with minimum indenting we will,sﬁgée at least once

for the arguments of every formula of which FMLA is a sub-formula.
The local variables of PPR1 are:

NODENAME is set to the value of GRECCNT on entry to PPR1, Then GRECCNT
* is incremented by one. NODENAME is to be thought of as pointing to FMLA.

RUNFLAT is a variable in which we accumulate the flatsize of FMLA-(the
number of characters it takes to print FMLA flat).

MINREM is a variable in which we keep the minimum amount.of space
remaining after pretty-printing each of the arguments of FMLA. MINREM is
bagically just the smallest value REMAINDER has had after recursive calls
‘'of PPR1 on the arguments of FMLA. '

L is just a variable that is used to CDR down FMLA as we call PPR!1 on
each of the arguments of FMLA.

RUNSTART is a variable used to concatenate the STARTLIST's which are
returned by recursive calls of PPR1 on the arguments of FMLA. RUNEND is
used to help NCONC together different STARTLIST's. RUNEND is always the
last cell of RUNSTART.

The Flow of Control through PPRI1

After initialization and assuming FMLA does not have length 1, we begin
looping around LOOPFLAT, CDRing down the arguments of FMLA. The tentative
assumption is that FMLA can be printed flat. As long as each of the
arguments of FMLA can be printed flat, we simply keep summing up the
FLATSIZE's in RUNFLAT and keep MINREM to be the least of the REMAINDER's.

If we finish CDRing down FMLA and each argument will fit flat, we ask
if RUNFLAT is < SPACELEFT. If so, then we can print FMLA flat.

If not, we set FLATSIZE to false and set STARTLIST to the list whose

only element is a packed number of the form:

1 4 13

The top bit is set if the best kind of indenting is possible. The 4
bits are set to the amount we further indent the arguments. The bottom .
13 bits are set to NODENAME. These packed numbers are set up by PPRPACK.

If, while CDRing down FMLA, we discover that some argument requirés
indentation (FLATSIZE is false), then we know that the arguments of FMLA

mustAbe indented also.

We initialize RUNSTART to be the STARTLIST defined by the fifst
argument which requires indenting, and fhen we begin looping around LOOPIND.
Here we call PPR1 recursively on each of the remaining arguments to FMLA.
If FLATSIZE is false after any of these calls, we concatenate the STARTLIST
defined by that call to the end of RUNSTART.

-l

When we reach NIL, we cons the packed number (as above) onto RUNSTART
and assign that to STARTLIST, and set FLATSIZE to false.

Following is LISP code for PPR, PPR1, PPR2, and PPRPACK. There are

two functions uéed but not defined: -

PPRDL takes one atomic argument and returns the number of charachters
in it. '

PPRSP takes one numeric argument and prints that many spaces.

Finally, there is an example of the kind of formula for which PPR was
written. It is printed at various MARG2 settings.

I thank J Moore for his substantial help in the coding, debugging and

documenting of PPR.

[DOCUMENF FOR PPR MEMO] TRACK 3%
PRIL 19731 |
CREATED 14.11 9 4 1973

HERE IS THE LISP CODE FOR PPR.

(DEFPROP PPR :
(LAMBDA (FMLA MARGL RPARCINT)
(PROG NIL

[14.12 9 A

(COND ((ATIM FMLA) (PRIN1 FMLA) (RETURN NIL))i

(SETQ@ GRECCNT 0O) ,
(SETQ SPACZLEFT (DIFFERENCE MARG2 MARG1))
(PPR1 FMLA (ADD1 RPARCNT))

o , (COND (FLATSIZE (PRINT FMLA) (RETURN NIL)))
‘ (SETQ NEXTNODE (LOGAND (CAR STARTLIST) &8191))

(SETQ NEXTIND (LOGSHIFT (CAR STARTLIST) (MINUS 13)))

. (SETQ GRECCNT -0)
(PPR2 FMLA MARG1)))
EXPR) '

+(DEFPROP
. PPR1
(LAMBDA
r (FMLA RPARCNT)
(PROG ‘
(NODENAME DLHDFMLA RUNFLAT MINREM L RUNSTART RUNEND)
(SETQ NODENAME GRECCNT)
(SETQ GRECCNT (ADD1 GRECCNT))
(SETQ DLHDFMLA (ADD1 (PPRDL (CAR FMLA))))
(COND ((NULL (CDR FMLA))
(SETQ FLATSIZE (PLUS RPARCNT DLHDFMLA))
(SETQ REMAINDER (DIFFERZNCE SoACELEFT FLATSIZE))
(RETURN NIL)) ‘
(SETg RUNFLAT DLHDFMLA)
(SETQ MINREM (DIFFERENCE SPACELEFT DUHDFMLA)Y)
(SETQ SPACELEFT (SUB1 SPACELEFT))
(SETQ L FMLA)
LOOPFLAT A
(SETA L (CDR L))
(COND ((NULL L) :
(SETQ SPACELEFT (ADD1 SOACELEFT))

(COND ((OR (EQUAL RUNFLAT SPACELEFT) (LESSP RUNFLAT SPACELEFT))

(SETQ FLATSIZE RUNFLAT)

(SETQ REMAINDER (DIFFERENCE SPACELEFT RUNFLAT)Y))

(T (SETQ STARTLIST (CONS (PPRPACK) NIL))
(SETQ ENDLIST STARTLISTY °
(SETG FLATSIZE NIL)))
(RETURN NILY)Y) :
(COND ((ATOM (CAR L))
(SET@ TEMP1 (PPRDL (CAR L))) :
(SETQ RUNFLAT (PLUS (ADD1 TEM21) RUNFLAT)Y)
(SETQ TEMP1 (DIFFERENCE SPACELEFT TEMP1))
(COND ((NULL (CDR L))
. ‘ (SETQ RUNFLAT (PLUS RPARCNT RUNFLAT)Y)
(SETQ TEMP1 (DIFTERENCE TEMP1 RPARCNT))))

» * (COND ((LESSP TEMP{ MINIEM) (SET@ MINREM TEMP1)))
: (GO LOOPFLAT)Y)) :
(PPR1 (CAR L) (COND ((CDR L) 1) (T (ADD1 RPARCNT))))
*(COND ((LESSP REMAINDER MINREM) (SETQ MINREM REMAINDER)))
(COND . : '
(FLATSIZE (SETQ RUNFLAT (P_ us (ADD1 FLATSIZE) RUNFLAT)) (GO LOOPFLAT)))
(SETQ RUNSTART STARTLIST) ' '
(SETQ RUNEND ENDLIST)
LOOPIND
(SETQ L (CDR L))
(COND ((NULL L)
(SETQ STARTLIST (cows (®PRPACK) RUNSTART))
(SETQ ENDLIST RUNEND)
(SETQ FLATSIZE NIL) _
(SETQ SPACELEFT (ADD1 S?ACELEF T))
(RETURN NIL)Y))
(COND ((ATOM (CAR L)) :
(SETQ TEMP1 (DIFFERENCE SPACELEFT (PPRDL (CAR L))))
(COND ((NULL (CDR L)) (SETQ T=MP1 (DIFFERENCE TEMP1 RPARCNT))))
: (COND ((LESSP TEMP1 MINREM) (SETQ MINREM TEMP1)))
' (GO LOOPIND)))
(PPR1 (CAR L) (COND ((CDR L) 1) (T (ADD1 RPARCNT))))
(COND ((LESSP REMAINDER MINREM) (SETQ MINREM REMAINDER))) A
(COND (FLATSIZE) (T (RPLACD RUNEND STARTLIST) (SETQ RUNEND FNDLIST)))
(GO LOOPIND)Y))
EXPR)

1 4
(DEFPROP
PPR2
(LAMBDA
_(FMLA MARG1)
(PROG
. {NONLFLAG INDFLAG)
(COND ((ATOM FMLA) (PRIN1 FMLA) (RETURN NIL)))
(COND~ ,
(CEQUAL GRECCNT NEXTNODE)
(SETQ MARG1 (PLUS MARG1 (LO3AND NEXTIND 15)))
(SETQ INDFLAG T)
(SETQ NONLFLAG (EQUAL 16 (LJGAND NEXTIND 16)))
(SETQ STARTLIST (CDR STARTLIST))
(COND (STARTLIST (SETQ NEXTNODE (_OGAND (CAR STARTLIST) 8191))
(SETQ NEXTIND (LOGSHIFT (CAR STARTLIST) (MINUS 1331)))))
(T (SETQ INDFLAG NIL) (SETQ NONLFLAG T)))
(SETQ GRECCNT (ADD1 GRECCNT))
(CUCHAROUT 24)
(PRIN1 (CAR FMLA))
(SETQ FMLA (CDR FMLA)) :
(COND ((NMULL FMLA) (CUCHAROUT 25) (RETURN NilL))y)
(COND (NONLFLAG (CUCHAROUT 16)) (T (CUCHAROUT 17) (PPRSP MARG1)))
Loop A
(PPR2 (CAR FMLA) MARG1)
(SETQ FMLA (CDR FMLAY)
- (COND ((NULL FMLA) (CUCHAROUT 25) (RZTURN NIL)))
(COND (INDFLAG (CUCHAROUT 17) (PPRSP MARG1)) (T (CUCHAROUT 16)))
+ (GO LOOP)))
EXPR)

(DEFPROP.
PPRPACK
(LAMBDA
NIL
(LOGOR » .)
(LOGSHIFT ‘ : o : :
(COND - ' , » 4
' ((LESSP MINREM DLHDFMLA) (SET@ REMAINDER 0) (ADDL MINREM)) ‘ -
(T (SET@ REMAINDER (DIFFZRENCE MINREM DLHDFMLA)) (PLUS 17 DLHDFMLA)))

13) :
NODENAME))

EXPR)

N . : : » PAGE 2

HERE IS A TYPICAL FORMULA FROM OUR: THZOREM PROVER PRETTY PRINTED WITH MARG? SET
T0 s50.

(IF
A
(IF :

(EQUAL (LAST GENRL1) (CAR A)) . .

(IF
(EQUAL (LAST (APPEND GENRL1 (CINS A1 NIL))) A1y.
(IF , ' .

A N
(IF -

GENRL1 ' ' .

.- (IF .

(EQUAL (LAST GENRL1) (CAR A)) .

(IF .
(APPEND GENRL1 (CONS A1 NI_))

(EQUAL (LAST (APPEND GENRL1: (CONS A% NIL))).

A1) .

(EQUAL GENRL11 A1)) .

T .

N (IF -) ‘ .
, (EQUAL GENRL11 (CAR A)) .

o (IF - .

. (APPEND GENRL1 (CONS A1 NI_d) .

(EQUAL (LAST (APPEND GENRL1 (CONS A1 NIL))).

© A1) ' .

(EQUAL GENRL11 A1)) : .

T)) . .

T) .

T) .

C(IF .

A , .

(IF ‘ .

GENRL1 - .

(IF .

(EQUAL (LAST GENRL1) (CAR A)) .

C(IF .

(APPEND GENRL1 (CONS A1 NIL)) .

(EQUAL (LAST (APPEND GENRL1 (CONS A1 NIL))).

A1) .

(EQUAL GENRL11 A1)) , .

D) .

CIF .
(EQUAL GENRL11 (CAR A)) .

CIF : .

(APPEND GENRL1 (CONS A1 NIL|») .

(EQUAL (LAST (APPEND GENRL1: (CONS A1 NIL))).

A1) .

(EQUAL GENRL11 A1)) .

) .

™) : , .

“CIF .
. A ' , . .
_CIF - .

* GENRL1 ‘ .

CIF ° : .

" (EQUAL (LAST GENRL1) (CAR A)) : .
(IF .
(APPEND GENRL1 (CONS A1 NI_)) .

- (EQUAL (LAST (APPEND GENRL1 (CONS A1 NIL))).

. A1) : .

(FQUAL GENRL11 A1)) ‘ _ .

) T) ’ L]
CIF ’ ' .
(EQUAL GENRL11 (CAR A)) .
(IF .

(APPEND GENRL1 (CONS Al NI_H)
(EQUAL (LAST (APPEND GENRL1 (CONS A1 NIL))Y).

A1) | :
(EQUAL GENRL11 A1)) .
™ .

™)

. ' | | PAGE 3
THIS IS THE SAME FORMULA PRINTED AITH MARG2 SET TO 65.

(IF .
A ‘
(IF .

(FQUAL (LAST GENRL1) (CAR A)) .
(IF "
(EQUAL (LAST (APPEND GENRL1 (CINS A1 NIL))) A1) "
(IF ' - .
A 1
(IF GENRL1 .
(IF (EQUAL (LAST GENRL1) (CAR A)) .
(IF (APPEND GENRL1 (CONS A1 NILD) .
(EQUAL (LAST (A2PSND GENRL1 (CONS A1 NIL))) AlL).
. (EQUAL GENRL11 A1)) , .
. Ty .
) (IF (EQUAL GENRL11 (CAR A)) .
) (IF (APPEND GENRL1 (CONS A1 NIL)) .
(EQUAL (LAST (A>PEND GENRL1 (CONS A1 NIL))) A1),
(EQUAL GENRL11 A1)) : : .
T)) ’ .
T) .
£ T) .
¢ CIF A .
(IF GENRL1 .
* (IF (EQUAL (LAST GENRLl) (CAR A)) .
: . (IF (APPEND GENRL1 (CJNS A1 NIL)) .
(EQUAL (LAST (A>PEND SENRL1 (CONS A1 NIL))) A1),
(ENUAL GENRL11 A1)) .
T)
(IF (EQUAL GENRL11 (CAR A))
(IF (APPEND GENRL1 (CONS A1 NIL))
(EQUAL (LAST (A2PEND GENRL1 (CONS A1 NIL))) A1)
(EQUAL GENRL11 A1)) '
7))
. ™)
(IF A
(IF GENRL1

(IF (EQUAL (LAST GENRL1) (CAR A))
(IF (APPEND GENRL1 (CONS A1 NIL))
(EQUAL (LAST (AP2END GENRL1 (CONS A1 NIL))) A1)
(EQUAL GENRL11 A1)).
L)
(IF (EQUAL GENRL11 (CAR A))
(IF (APPEND GENRL1 (CZONS A1l NIL))
(EQUAL (LAST (AP2END GEZNRL1 (CONS A1 NIL))) A1)
(EQUAL GENRL11 A1)

0.060.0.00...0-.4..

™)
™))

~ . &

FINALLY, HERE - [SSFHE SAME FORMULA.PRINTED WITH MARG2 SET TO 78.

(IF A
(IF (EQUAL (LAST GENRL1) (CAR A))
C(IF (EQUAL (LAST (APPEND 3ENRL1 (CONS A1 NIL)Y)) AD)
(IF A :
(IF GENRL1
(IF (EQUAL (LAST GENRL1) (CAR A))
(IF (APPEND GENRL1 (CONS A1 NIL)Y)

PAGE 4

(EQUAL! (LAST (APPEND GENRL1 (CONS A1 NIL))) AL)

(EQUAL! GENRL11 A1)
T
(IF (EQUAL GENRL11 (CAR A))
(IF (APPEND GENRL1 (CONS A1 NIL))

(EQUA_" (LAST (APPEND GENRL1 (CONS A1 NIL)))

(EQUA_! GENRL11 A1)

™)
T
T)
CIE -4
(IF GENRL1
(IF (EQUAL (LAST 3ENRL1) (CAR A))
(IF (APPEND G=NRL1 (CONS A1 NIL))
2 (EQUAL (LAST (APPEND GENRL1 (CONS A1 NIL)))
) (EQUAL GENRL11 A1))
} T
(IF (EQUAL GENRL11 (CAR A))
(IF (APPEND GZ=NRL1 (CONS A1 NIL))
(EQUAL (LAST (A2PEND GENRL1 (CONS A1 NIL)))
(EQUAL GENRL11 A1))
T3
™)
(IF A
(IF GENRL1

(IF (EQUAL (LLAST GENR_1) (CAR A))
. (IF (APPEND GENRL1 (CONS A1 NIL)) _
(EQUAL (LAST (APPEND GENRL1 (CONS A1 NIL)))
(EQUAL GENRL11 A1)
T)
(IF (EQUAL GENRL11 (CAR A))
(IF (APPEND GENRL1 (CONS A1 NIL))
(EQUAL (LAST (APPEND GENRL1 (CONS A1 NIL)))
(EQUAL GENRL11 A1))
7))
T9)

A1)

A1)

A1)

A1)

AL)

e I~ = SRR ol SRR PRl e SRR (S Lo URES TR TR TR SICRE 0 R T ST TR JRES " TSR RIS SR TR PR T T e S T TR N T SR TR TR SR S T

