21.16HRS. 14 SEPT 1973.
[FILE DUMP]
[ADDERS]
[/ INPUT]
[/ EVAL]
[/ GEN]
[/ TYPE]
[/ SORTDEFS]
[/ GENSYM]
[/ PROPS]
[PPR]
[/ IDENT]
[ALAN]

$$
\begin{aligned}
& \text { THE THEOREM PROVER } \\
& \text { AS REPORTED IN } \\
& \text { J'S THESIS. }
\end{aligned}
$$

[21.1614 SEPT 1973]

FUNCTION ADDEFS x :
VARS CUCHAROUT U V;

DIN $[/$ DEFS] $)->U$;
DOUT ([/DEFS]) \rightarrow CUCHAROUT;
APPLIST $X, L A M B D A \quad X$;
PRSTRING('DEFINE
(');
PPRIND([\% X, PROP("DEFN", X) \%], 1, 2);
PRSTRING(');
');
END);
DOIO(U,CUCHAROUT);
END;
ADDEFS();

```
[/ INPUT] TRACK 9
4491973
CREATED 20.03 14 9 1973
```

[21.16 14 SEPT 1973]

COMMENT , THIS FILE CREATES THE FUNCTION "OEFINE" WHICH JUST PUTS A FUNCTION DEFINITION ON THE PROPERTY LIST OF THE FUNCTION NAME. THE FUNCTION "GETTHM" JUST LINKS TO OUR DISC TRACK TO FETCH a THEOHEM FROM THE STANDARD THEOREM FILE, GIVEN A THEOREM NAME. (THIS IS NOT AN ESSENTIAL PART OF THE PROGRAM, ';

VARS THMTRACK THMFILE;
$36 \rightarrow$ THMTRACK;
[THEOREMS] \rightarrow THMFILE;
NIL \rightarrow ALLFNS;
FUNCTIUN DEFINE x;
[\% "DEFN", HD(TL(X)) \%] -> MEANING(HD (X));
IF MEMBER(HD (X), ALLFNS)
THEN; ELSE HD (X) : : ALLFNS -> ALLFNS; CLJSE;
END;
FUNCTION NORMDEF X;
VARS PROVEFNS LEXPR FNNAME;
IF ISWORD (X)
THEN X; PROP("DEFN", X);
ELSE HD (X); HD (TL(X)); CLOSE;
\rightarrow LEXHR \rightarrow FNNAME;
NIL \rightarrow PROVEFNS;
NOKMALATE(HD(TL(TL(LEXPR)))) $->X$;
[\% LOOPIF PROVEFNS $/=$ NIL
THEN IF HD(PROVEFNS) $/=F N N A M E$ AND
PROP("DEFN", HD (PROVEFNS)) =UNDEF
THEN HD(PROVEFNS); CLOSE;
TL(PROVEFNS) $->$ PROVEFNS;
CLOSE \%] \rightarrow PROVEFNS;
IF PROVEFNS $1=$ NIL
THEN NL (2); PR(FNNAME); NL (1);
PRSTRING('UNDEFINED FUNCTIONS: ');
PR (PROVEFNS):
NL (2);
CLOSE;
DEFINE ([\% FNNAME, [\% "LAMBDA", HD(TL(LEXPマ)), X \%] \%]);
END;

```
FUNCTION GETTHM THMNAME;
VARS PROGLIST TRK;
DISCUSER - TRKK;
UTHACK(THMTRACK);
IF HD(THMNAME) = "ALL"
    THEN [% COMPILE(DIN(THMFILE)) %]; DTRACK(TRK);
        -> TRK;
        IF TL(THMNAME) /= NIL
            THEN
            HD(TL(THMNAME)) -> THMNAME;
            LOUPIF NOT(EQUAL(THMNAME,HD(HD(TRK)))) THEN TL(TRK)->TRK;CLOSE;
```

```
        CLOSE;
        TRK;
            EXIT;
INCHARITEM(DIN(THMFILE)) -> LIST;
DTRACK(TRK);
FNTOLIST(LAMBDA;LOOP:LIST()}=>\mathrm{ \TRK;IF TRK="COMMENT"
        THEN LOOPIF LIST()/=";" THEN CLOSE; GOTO LOOP; CLOSE;
        TRK;END) -> PROGLIST;
LOOPIF NOT(NULL(PROGLIST))
    THEN
    IF EQUAL(THMNAME,LISTREAD()) THEN ERASE(ITEMREAD());LISTREAD();EXIT;
    LOOPIF ITEMREAD() /= ";" THEN CLOSE;
    CLOSE;
ERRFUN(THMNAME,57);
END;
FUNCTION ADDEFS;
DCOMP([ADDEFS]);
END;
```

```
[/ EVAL] TRACK 9
```

CREATED 15.27 15 6 1973

```
```

```
CREATED 15.27 15 6 1973
```

```
```

VARS PROVEFNS APPLYNONPRIM BOMBOUT OTHERFAILS POCKETIT BOMBED EXPNDGFUN
BINDVARS AUXANALY ANALYSIS;
NIL -> PROVEFNS;
COMMENT ,THIS IS THE BASIC EVAL ROUTINE. `; FUNCTION EVAL TERM; VARS Y X; COMMENT 'IF TERM IS ATOM, RETURN IT OR VALUE, ACCORDING TO WHICH ATOM.`;
IF ATOM(TERM)
THEN
IF TERM = NIL OR TERM = "T" OR ISNUMBER(TERM)
THEN TERM;
ELSEIF ASSOC(TERM,ALIST)
THEN BACK();
EISE TERM; CLOSE;
EXIT;
COMMENT 'GET FUNCTION SYMBOL`; HD(TERM) -> X; COMMENT 'CONSIDER THE POSSIBILITIES`;
IF X = "CAR"
THEN
POCKETIT -> X;
0 -> POCKETIT;
EVAL(HD(TL(TERM))) -> Y;
X -> POCKETIT;
IF Y = NIL
THEN NIL;
ELSEIF Y = "T"
THEN NIL;
ELSEIF ISNUMBER(Y)
THEN NIL;
ELSEIF ISNUMSKO(Y)
THEN NIL;
ELSEIF SHD(Y) = "CONS"
THEN HD(TL(Y));
ELSE BOMBOUT([% "CAR", Y %]);
EXIT;
STEPCNT + 1 -> STEPCNT;
EXIT;
IF X = "CDR"
THEN
POCKETIT -> X;
0 -> POCKETIT;
EVAL(HD(TL(TERM))) -> Y;

```
```

 X -> POCKETIT;
 IF Y = NIL
 THEN NIL;
 ELSEIF Y = "T"
 THEN NIL;
 ELSEIF ISNUMRER(Y)
 THEN Y - 1;
 ELSEIF SHD(Y) = "CONS"
 THEN HD(TL(TL(Y)));
 ELSE BOMBOUT([% "CDR", Y %]);
 EXIT;
 STEPCNT + 1 -> STEPCNT;
 EXIT;
 IF X = "CONS"
THEN
COMMENT '[% "CONS", EVAL(HD(TL(TERM))), EVAL(HD(TL(TL(TERM)))) %]`; EVAI_(HD(TL(TERM)))->X; EVAL(HD(TL(TL(TERM))))->Y; [% "CONS", X , Y %]; EXIT; IF X = "EQUAL" THFN EVAL.(HD(TL(TERM))) -> X; EVAL(HD(TL(TL(TERM)))) -> Y; IDENT(Y,X) -> F001; IF F001 = NIL THEN NIL; ELSEIF F001 THEN "T"; ELSEIF ISCONS(Y) AND ISCONS(X) THEN APPLY(ALIST,LAMBDA ALIST; CONSPAIR("X",X) : : (CONSPAIR("Y",Y) : : ALIST) -> ALIST; EVAL([COND [EQUAL [CAR X] [CAR Y]] [EQUAL [CDR X] [CDR Y]] NIL]) ; ENO);RETURN; STEPCNT + 1 - STEPCNT; GOTO CONDRULES; ElSE [% "EQUAL", X, Y %]; EXIT; STEPCNT + 1 -> STEPCNT; EXIT; IF X = "COND" THEN CONDRULES: EVAL(HD(TL(TERM))) -> Y; IF Y = NIL OR Y = 0 THEN EVAL(HD(TL.(TL(TL(TERM))))); ELSEIF ISCONS(Y) THEN EVAL(HD(TL(TL(TERM)))); ELSE COMMENT '\Gamma%"COND",Y,EVAL(HD(TL(TL(TERM)))), EVAL(HD(TL(TL(TL(TERM)))))%]`;
EVAL(HU(TL(TL(TERM)))) ->X;

```
```

EVAL(HD(TL(TL(TL(TERM)))))->FOO1;
[% "COND", Y, X, FOO1 %];
EXIT;
STEPCNT+1->STEPCNT;
EXIT;
COMMENT 'X MUST BE NON-PRIMITIVE. CAREFULLY EVAL IT`;
APPLYNONPRIM();
END;
FUNCTION BOMBOUT TERM;
IF POCKETIT
THEN
TERM :: POCKET - POCKET;
ELSE TERM :: OTHERFAILS ->> OTHERFAILS;
CLOSE;
TERM;
END;
FUNCTION EVALARGS;
VARS POCKET POCKETIT;
NIL -> POCKET;
(HD(TERM) = EXPNDGFUN) -> PDCKETIT;
MAPLIST(TL(TERM),EVAL);
IF POCKET /= NIL
THEN
POCKET :: ROMBLIST }->\mathrm{ BOMBLIST;
1 -> BOMBED;
CLOSE;
END
FUNCTION EXPANDCALL EXPNDGFUN ALIST;
IF NOT(MEMBER(EXPNDGFUN,PROVEFNS))
THEN EXPNDGFUN : : PROVEFNS -> PROVEFNS; CLOSE;
PROP("DEFN",EXPNDGFUN) -> FOO1;
IF F001 = UNDEF
THEN
EXPNDGFUN :: EVALDARGS;
EXIT;
NIL -> BOMBLIST;
NIL -> OTHERFAILS;
BINDVARS(EVALDARGS,HD(TL(F001)),ALIST)->A_IST;
EVAL(HD(TL(TL(FOO1))));
END;
FUNCTION BINDVARS ARGLIST VARLIST ALIST;
LOOPIF ARGLIST /= NIL
THEN
CONSPAIR(HD(VARLIST),HD(ARGLIST)) : : ALIST m ALIST;
TL(ARGLIST) -> ARGLIST;
TL(VARLIST) -> VARLIST;
ClOSE;
ALIST;
END;
FUNCTION APPLYNONPRIM;
VARS EVALDARGS SAVEANALY SAVEBLIST SAVEOTHER SAVEPOCK;
EVALARGS() }->\mathrm{ EVALDARGS;

```
```

IF BOMBED THEN HD(TERM) :: EVALDARGS; EXIT;
ANALYSIS -> SAVEANALY;
BOMBLIST -> SAVEBLIST;
OTHERFAILS -> SAVEOTHER;
POCKET->SAVEPOCK;
EXPANDCALL(HD(TERM),ALIST) ->FOO1;
IF BOMBED
THEN
HD(TERM) :: EVALDARGS;
SAVEPOCK - PPOCKET;
[% "***", HD(TERM), BOMBLIST, OTHERFAILS,HD(TERM),"***" %]
:: SAVEANALY -> ANALYSIS;
ELSE
F001;
SAVEANALY -> ANALYSIS;
STEPCNT + 1 -> STEPCNT;
CLOSE;
0 - BOMBED;
SAVEBLIST -> BOMBLIST;
SAVEOTHER -> OTHERFAILS;
END;
FUNCTION EVALUATE TERM;
VARS ALIST;
NIL->ALIST;
NIL -> BOMBLIST;
NIL -> ANALYSIS;
NIL -> OTHERFAILS;
UNDEF }->\mathrm{ EXPNDGFUN;
O -> PUCKETIT;
0 - BOMBED;
0 -> STEPCNT;
EVAL(TERM);
END;

```
```

[/ GEN] TRACK 9

```
```

CREATED 15.05 1 6 1973

```
```

CREATED 15.05 1 6 1973

```
```

COMMENT, THIS FILE SUPPLIES MANY LIST PROEESSING FUNCTIONS THAT
SHOULD BE STANDARD TO POP-?. IN ADDITION, SEVERAL FUNCTIONS
FOR RECOGNIZING CERTAIN CLASSES OF LISP EXPRESSIONS ARE PROVIDED.
THESE INCLUDE SKOLEM CONSTANTS, EXPRESSIOVS COMPOSED ONLY OF
"CONS" AND "NIL" (CALLED REALLINKS IV THIS PROGRAM), EXPRESSIONS
IHAT START WITH "CONS" AND EXPRESSIONS STARTING WITH ANY LISP
PRIMITIVE.';
VARS ASSOCID MEMBERID XAPPFLAG VERBOSE FOJ1 F002 F003 IDENT PROP
ASSOC MEMBER GENSYM;

```
FUNCTION GENMEM \(X\) L EQFN;
LOOPIF L = NIL
    THEN IF EQFN(X,HD(L)) THEN 1; EXIT;
    \(T L(L)->L\);
    CLOSE;
U;
END;
GENMEM(\% EQ \%) -> MEMBER;
FUNCTIUN NCONC L1 L2;
IF \(L 1=\) NIL
    THEN L?;
    ELSE L1;
    LOOPIF (TL(L1) /= NIL) THEN TL(L1) -> L1;CLOSE;
    L2 - \(\mathrm{TL}(L 1) ;\)
    CLOSE;
END;
FUNCTIUN DELETE X L;
VARS LO;
\(L \rightarrow L 0\);
IF \(L=\) NIL THEN NIL;
ELSEIF HD(L) \(=X\) THEN TL(L);
    ELSE
LOOP:
    IF TL(L) = NIL THEN LO; EXIT;
    IF HD(TL(L)) = X THEN TL(TL(L)) \(\rightarrow\) TL(L); LO; EXIT;
    TL(L) -> L;
    GOTO LOOP;
    CLOSE;
ヒND;
FUNCTION XAPPLIST L FN;
\(0 \rightarrow\) XAPPFLAG;
LOOPIF L/= NIL AND NOT (XAPPFLAG)
    THEN
    FN(HD(L));
    \(T L(L) \rightarrow\);
    CLOSE;
END;
```

FUNCTIUN GENASSOC }X L EQFN
LOOPIF L = NIL
THEN
IF EQFN(X,FRONT(HD(L))) THEN HD(L); 1; EXIT;
TL(L) -> L;
CLOSE;
0;
END;
GENASSOC(% EQ %) -> ASSOC;
FUNCTION SHD X;
IF ATOM(X) THEN UNDEF;
ELSE HD(X); CLOSE;
END;
MACRO SWAP;
MACRESULTS([;TERM1;TERM2->TERM1->TERM2;]);
END;

```
FUNCTIUN ISSTAR \(X\);
CHARWORD \((X, 1)=26\);
END;
FUNCTION ISREALLINK TERM;
TOP:
IF ATOM(TERM)
    THEN
    IF TERM \(=\) NIL OR TERM \(=" T "\)
        THEN 1;
        ELSE ISINTEGER (TERM); CLOSE;
    ELSEIF HD(TERM) = "CONS"
        THEN IF ISREALLINK (HD (TL(TERM)))
            THEN HD (TL(TL(TERM))) \(\rightarrow\) TERM; GOTO TOP;
            ELSE 0; CLOSE;
        ELSE 0; CLOSE;
END;
FUNCTION ISNUMSKO \(X\);
IF ATOM (X)
    THEN
    CHARWORD \((X, 1) \rightarrow X\);
    IF \(X>40\) THEN \(X<47\) ELSE 0 ; CLOSE;
    ELSE O; CLOSE;
END;
FUNCTION ISCONS TERM;
IF ISNUMBER(TERM) OR TERM \(=" T "\)
    THEN 1;
    ELSE SHD(TERM) = "CONS" CLOSE;
END;
```

FUNCTION SUBST X Y Z;
VARS TEMP;
IF SUBST1(Z) THEN ELSE Z;CLOSE;
END;
FUNCTION SUBST1 Z;
IF IDENT (Y,Z)=1 THEN X; 1;
ELSEIF ATOM(Z) THEN 0;
ELSE SUBST;
LOOP1: IF Z=NIL THEN ELSE Z; TL(Z)->Z; GOTO LOOP1;CLOSE;
LOOP2: ->TEMP;
IF TEMP=SUBST THEN O; EXIT;
TEMP->Z;
IF SUBST1(HD(7)) THEN CONS(TL(Z))->Z;GOTO LOOP3;
ELSE GOTO LOOPZ;
CLOSE;
LOOP3:
-> TEMP;
IF TEMP=SUBST THEN Z;1;EXIT;
CONS(HD(TEMP),Z)->7;
IF SUBST1(HD(Z)) THEN ->HD(Z); CLOSE;
GOTO LOOP3;
ClOSE;
END;
FUNCTION APPSUB1 ALIST TERM;
VARS X:
IF ASSOCID(TERM,ALIST)
THEN BACK(); 1;
ELSEIF ATOM(TERM)
THEN TERM; 0;
ELSE
APPSUB1(ALIST,HD(TERM)) }->>x\mathrm{ ;
IF LOGOR(APPSUB1(ALIST,TL(TERM)), X)
THEN CONS(); 1;
ELSE ERASE(); ERASE(); TERM; 0; CLOSE;
CLOSE;
END;
FUNCTION APPSUBST;
ERASE(APPSUB1());
END;
FUNCTIUN INTSECTP L1 L2 TESTFN;
LOOPIF LI/= NIL
THEN
IF GENMEM(HD(L1),L2,TESTFN) THEN 1; EXIT;
TL(L1) -> L1;
CLOSE;
O;
END;
FUNCTION UNION L1 L2 TESTFN;
LOOPIFLI/= NIL
THEN
IF GENMEM(HD(L1),L2,TESTFN)
THEN;

```
```

 ELSE HD(L1)::L2->L2;CLOSE;
 TL(L1)->L1;
CLOSE;
L2;
END;
FUNCTION CONSCNT L;
IF ATOM(L)
THEN 0;
ELSE 1+CONSCNT(HD(L))+CONSCNT(TL(L)); CLOSE;
END;
FUNCTION PRSEQUEN STR LIST PRFN;
IF VERBOSE
THEN
POPTTON();
NL(4);
PRSTRING(STR);
LOOP:
PRFN(HD(LIST));
TL(LIST) - LIST;
IF LIST = NIL THEN PRSTRING(`.`);NL(2);EXIT;
IF TL(LIST) = NIL
THEN PRSTRING(' AND ');
ELSE PRSTRING(', ');
ClOSE;
GOTO LOOP;
CLOSE;
END;
FUNCTION LISPPRIM TERM;
IF ATOM(TERM)
THEN IF TERM = NIL OR TERM = "T" THEN 1; ELSE ISNUMBER(TERM);CLOSE;
ELSE
HD(TERM) -> TERM;
IF TERM = "CAR" OR TERM = "CDR" OR TERM = "CONS" OR
TERM = "EQUAL" OR TERM = "COND"
THEN 1;
ELSE 0; CLOSE;
CLOSE;
END;
MACRO PPRDEF;
PPR(PROP("DEFN", ITEMREAD()));
END;

```

COMMENT, THIS FILE CONTAINS THE FUNCTIONS WHICH DECIDE IF AN EXPRESSION IS 3OOLEAN, NUMERIC, OR OF SOME OTHER TYPE. THE FUNCTION "TYPEEXPR" ACTUALLY WRITES LISP FUNCTIONS. `;

VARS EVALUATE NORMALIZE REDUCE COVSFV ATOYFN PROPNAME NUMERIC BOOLEAN;
```

COMMENT 'THIS IS A GENERAL FUNCTION FOR DECIDING IF AN EXPRESSION IS
BOOI.EAN OR NUMERIC. THESE ARE SUCH COMMON TYPES IT WAS DECIDED TO
CHECK FOR THEM EXPLICITLY. IT IS JUST A SPECIALIZATION OF THE GENERAL
IYPE FUNCTION. ESSENTIALLY IT JUST CHECKS THAT EVERY POSSIBLE OUTPUT
FROM THE EXPRESSION SATISFIES THE APPROPRIATE PROPERTY.`;
FUNCTION GENTYPR1 TERM;
VARS FUNSYM;
IF ATOM(TERM) THEN ATOMFN(TERM); EXIT;
HD(TERM) -> FUNSYM;
IF FUNSYM = "CONS" THEN CONSFN(TERM);
ELSEIF FUNSYM = "CAR" OR FUNSYM = "CDR" THEN 0;
ELSEIF FUNSYM = "EQUAL" THEN 1;
ELSFIF FUNSYM = "COND"
THEN
IF GENTYPR1(HD(TL(TL(TERY))))
THEN GENTYPR1(HD(TL(TL.(TL(TERM)))));
ELSE 0; CLOSE;
ELSE
PROP(PROPNAME,FUNSYM) -> FOO1;
IF FOO1 = UNDEF THEN FOO1; EXIT;
PROP("DEFN",FUNSYM) -> FOO1;
IF FOO1 = UNDEF THEN 0 - PROP(PROPNAME,FUNSYM); 0; EXIT;
1 -> PROP(PROPNAME,FUNSYM);
IF GENTYPR1(HD(TL(TL(FOO1))))
THEN 1;
FLSE 0 -> PROP(PROPNAME,FUNSYM); 0; CLOSE;

```
Close;
END;
FUNCTION GENTYPER TERM ATOMFN CONSFN PROPVAME;
GENTYPR1 (TERM) ;
END;
GENTYPER(\% I_AMBDA TERM; IF TERM = NIL OR TERM = O OR TERM = 1 OR TERM = "T"
    THEN 1.; ELSE 0; CLOSE; END,
    LAMBDA TERM; IDENT (TERM,1) = 1; END,
    "BOOLEAN" \%) -> BOOLEAV;
GENTYPER(\% I.AMBDA TERM; IF ISNUMBER(TERM) OR ISNUMSKO(TERM) OR TERM = "T"
                        THEN 1;ELSE TERM = NIL; SLOSE; END,
    LAMBDA TERM; IF IDENT(HD(TL(TERM)),NIL) \(=1\)
    THEN NUMERIC(HD(TL(TL(TERM)))); ELSE 0; CLOSE;END,
    "NUMERIC" \%) - \({ }^{\text {N }}\) NUMERIC;
```

COMMENT 'THE FUNCTIONS "bOOLEAN" AND "NUMERIC" (ABOVE) ARE JUST
INSTANCES OF THE MORE GENERAL GENTYPER.';
COMMENt 'THE FUNCTION NORMALATE Just EvALS, NORMALIZES and reduces an
EXPRESSION TO DEATH.';
FUNCTION NORMALATE TERM;
VARS L;
LOOP:
TERY -> L;
REDUCE(NORMALIZE(EVALUATE(TERM))) -> TERM;
IF EQUAL(TERM,L) THEN L; EXIT;
GOTO LOOP;
END;

```
COMMENT, THIS IS THE WORKHORSE OF THE FUNETION WHICH WRITES NEW FUNCTIONS.
FOR EVERY OUTPUT OF AN EXPRESSION, TYPEEX고 PRODUCES A PIECE OF
code which recognizes that output. the variable "x" is used
Io represent the structure being ins?ected. it will become the
local variarle of the recursive function produced. note that when
THE FUNCTION ENCOUNTERS A NON-PRIM FUNCTIJN WHICH HAS NOT YET
bet typed it gives the new function a tyoe function on the property
LIST) and then writes the definition of that function. thus, recursive
Calls of the function being typed are idevtified as already having a
TYPE FUNCTION -- NAMELY, THE ONE BEING WRITTEN. NOTE THAT AFTER
THE FUNCTION bODY HAS bEEN WRITTEN NORMALATE IS USED TO OPTIMIZE THE CODE.`;
FUNCTION TYPEEXP1 TERM;
VARS TYPENAME TYPEDEFN FUVSYM PROVEFNS DEFN;
IF ATOM(TERM)
    THEN
    IF ISNUMBER(TERM) OR TERM = NIL JR TERM = "T"
        THEN [\% "FQUAL", "X", TERM \%];
        El_SE "T"; Cl_OSE;
    EXIT;
HD(TERM) \(\rightarrow\) FUNSYM;
IF FUNSYM \(=\) "CAR" OR FUNSYM \(=\) "CDR"
    THEN "T";
ELSEIF FUNSYM \(=\) "CONS"
    THEN
    IF NUMERIC(TERM)
        THEN [\% "EQUAL", "X", TERM \%];
        ELSE [\% "COND", "X", [\% "COND", SU3ST([CAR x],"X",
            TYPEEXP1(HD(TL(TERM)))), SUBST([CDR X],"X",
            TYPEEXP1(HD(TL(TL(TERY))))), VIL \%], VIL \%]; CLOSE;
ELSEIF FUNSYM = "EQUAL"
    THEN [COND \(X\) [EQUAL \(X\) T] T];
ELSEIF FUNSYM = "COND"
    THEN
    [\% "COND", TYPEEXP1(HD(TL(TL(TL(TERM))))), "T",
                                    TYPEEXP1(HD(TL(TL(TERM)))) \%];
ELSEIF BOOLEAN(TERM)
    THEN [BOOLEAN X];
ELSEIF NUMERIC(TERM)
    THEN [NUMBERP X];
ELSE
PROP("「YPEFN",FUNSYM) -> TYPENAME;
IF TYPENAME /= UNDEF THEN TYPENAME :: [X]; EXIT;
PROP("DEFN",FUNSYM) -> DEFN;
```

IF DEFN = UNDEF
THEN "CONSTTRUE" -> PROP("TYPEFN",FUNSYM); "T"; EXIT;
GENSYM(FUNSYM,"TYPE") -> TYPENAME;
TYPENAME -> PROP("TYPEFN",FUNSYM);
1 -> PROP("BOOLEAN",TYPENAME);
NORMAI_ATE(SUBST(NIL,[%TYPENAME, "X"%],TYPEEXP1(HD(TL(TL(DEFN))))))
-> TYPEDEFN;
IF IDENT(TYFEDEFN,"T") = 1 OR EQUAL(TYPEDEFN,[CONSTTRUE X])
THEN
"CONSTTRUE" -> PROP("TYPEFN",FUNSYM);
"T";
ELSE
DEFINE(TYPENAME::("LAMBDA"::([X]::(TYPEDEFN::NIL))::NIL));
TYPENAME::[X];
CLOSE;
ClOSE;
END;
COMMENT, THIS IS THE TOP-LEVEL FUNCTION FOR TYPING. IT LETS TYPEEXPI
DO THE WORK AND FILTERS OUT THE CONSTANT TRUE FUNCTION`;
FUNCTION TYPEEXPR TERM;
TYPEEXP1(TERM) -> TERM;
TERM;
IF NOT(ATOM(TERM)) AND LISPPRIM(TERM)
THEN
NORMALATE();
CLOSE;
-> TERM;
IF IDENT(TERM,"T") = 1
THEN [CONSTTRUE X];
ELSE TERM; ClOSE;
END;

```
```

[/ SORTDEFS] TRACK 9
CREATED 15.36 8 5 1973
VARS OLDMARG? OLDDEFINE OLDPPRSPCHAR;
COMPILE(LIBRARY([ALLSORT]));
DEF[NE -> OLDDEFINE;
IDENTFN -> DEFINE;
PPRSPCHAR -> OLDPPRSPCHAR;
MARG2 -> OLDMARG2;
79 -> MARG2;
16 -> PPRSPCHAR;
DTRACK(36);
DOUT([/DEFS]) -> DDF2;
UDF2 -> CUCHAROUT;
APPLIST(ALLSORT([% COMPILE(DIN([/DEFS])) %],
LAMBDA X Y; ALFER(HD(X),HD(Y));END),
LAMBDA X;
NL(2);PRSTRING('DEFINE`);NL(1);PRSTRING('(`);
PPRIND(X,1,2);PRSTRING(');');
END);
DDF?(TERMIN);
ULDMARG2 -> MARG2;
OLDPPRSPCHAR -> PPRSPCHAR;
CHAROUT -> CUCHAROUT;
OLDDEFINE -> DEFINE;

```

COMMENT THIS FILE CREATES THE GENSYM FUNCTION. THE FUNCTION IS USED TO GENERATE NEW ATOMS FOR SKOLEM CONSTANTS AND FUNCTION
NAMES. THE SECOND ARGUMENT IS USUALLY 0 YEANING GENERATE THE NEXT ATOM STARTING WITH THE TOPWORD. IF THE SECOND ARGUMENT IS NOT A NUMBER, THE TWO WORDS ARE CONCATENATED TO FORM THE NEW SYMBOL。';

VARS GENALIST GLBGENALIST;

NIL -> GLBGENALIST;
NIL \(\rightarrow\) GENALIST;
FUNCTIUN NOCHARS \(x\);
VARS R;
\(X / / 10->X->R\);
IF \(X\) THEN NOCHARS \((X) \rightarrow X ; R ; x+1\);
ELSE R;1; CLOSE;
END;

FUNCTION GENSYM TOPWORD BTMWORD;
VARS CNT;
IF BTMWORD \(=0\)
THEN
IF ASSOC(TOPWORD,GENALIST)
THEN
\(\rightarrow\) CNT;
BACK (CNT) + \(->\) BTMWORD;
BT:IWORD \(\rightarrow\) BACK (CNT);
ELSE
CONSPAIR(TOPWORD,1) : : GENALIST \(\rightarrow\) GENALIST;
\(1 \rightarrow\) BTMWORD;
CLOSE;
CLOSE;
IF ISNUMBER(BTMWORD)
THEN
CONSWORD(NOCHARS (BTMWORD)) \(\rightarrow\) BTYWORD;
CLOSE;
IF DATALENGTH(TOPWORD) + DATALENGTH(BTMWORD) > 8
THEN
DESTWURD (TOPWORD) \(\rightarrow\) CNT;
LODPIF CNT \(>4\) THEN CNT-1->CNT;ERASE();CLOSE;
DESTNORD (BTMWORD) + CNT \(\rightarrow\) CNT;
LOOPIF CNT > 8 THEN CNT-1->CNT;ERASE();CLOSE;
ELSE
DESTWORD (TOPWORD) \(\rightarrow\) CNT;
DESTWORD (BTMWORD) + CNT \(->\) CNT;
Close;
CONSWORD (CNT);
END;

FUNCTIUN GLBGENSYM;
VARS GENALIST;
GLBGENALIST \(\rightarrow\) GENALIST;
GENSYM();

GENALIST->GLBGENALIST; END:

GENSYM \(\rightarrow\) GENSKO:
```

[/ PROPS] TRACK 9
CREATED 9.33 8 5 1973

```
```

COMMENT 'THIS FILE IMPLEMENTS PROPERTY LISTS IN POP-2 USING MEANING`;
FUNCTIUN PROP PROPNAME WORD;
VARS X;
MEANING(WORD) -> X;
IF X = UNDEF THEN NIL -> X; X }->\mathrm{ \ MEANING(WORD);CLOSE;
LOOPIF X /= NIL
THEN IF HD(X) = PROPNAME THEN HD(TL(X)); EXIT;
TL(TL(X)) - > X;
CLOSE;
PROPNAME :: (UNDEF :: MEANING(WORD)) - M MEANING(WORD);
UNDEF;
END;
LAMBUA VAL PROPNAME WORD;
VARS X;
MEANING(WORD) -> X;
IF X = UNDEF THEN NIL->X;X->MEANING(NORD);CLOSE;
LOOPIF X /= NIL
.THEN
IF HD(X) = PROPNAME THEN VAL -> HD(TL(X));EXIT;
TL(TL(X)) ->X;
CLOSE;
PROPNAME :: (VAL :: MEANING(WORD)) - MEANING(WORD);
END;->UPDATER(PROP);

```

COMMENT, THIS IS THE WORLDS BEST PRETTY PRINT ROUTINE. IT PRINTS OUT LISP EXPRESSIONS VERY NEATLY AND VERY FAST, DO NOT BOTHER TO GET BOGGED DOWN IN IT UNLESS YOU WANT TO KNOW ALL THERE IS TO KNOW ABOUT PRETTY PRINTING. SEE BOB BOYERS MEMO ON IT FROM DCL. FOR THE THEOREM PROVERS PURPOSES IT IS SUFFICIENT TO KNOW THAT PPR PRINTS A LISP EXPRESSION.';

VARS NILCONS X TEMP1 PPRPACK PPRDL ENDLIST STARTLIS ADDLINES REMAINDE FLATSIZE RPARCNT SPACELEF GRECCNT PPRMAX1 PPRMAXLNS MARGZ PPRSTRIP PPRRSPCHAR PPRSP STARTLIST NEXTIND NEXTNODE PPRATOM PPRJUMP PPRLINES PPR PPRFLAG;
```

NIL :: NIL ->NILCONS;

```
```

30 -> PPRSPCHAR;

```
16->PPRMAXLNS;
60->MARG2;
INITC(80)->PPRSTRIP;

FUNCTION PPR1 FMLA RPARCNT;
VARS NODENAME DLHDFMLA RUNFLAT MINREY L RJNSTART RUNEND; GRECC.VT->NODENAME; GRECCNT+1 \(\rightarrow\) GRECCNT;
IF \(\operatorname{ATOM}(H D(F M L A))\) THEN PPRDL(HD(FMLA)) \(+1 \rightarrow D L H D F M L A\);
ELSE \(0 \rightarrow\) DLHDFMLA;
    FMLA \(\rightarrow\) TL(NILCONS);
    NILCONS->FMLA;
Close;
IF TL(FMLA) =NIL THEN RPARCNT+DLHDFMLA \(\rightarrow\) PLATSIZE;
    SPACELEFT-FLATSIZE->REMAINDER;EXIT;
DLHDFMLA \(\rightarrow\) RUNFLAT;
SPACELEFT-DLHDFMLA ->MINREM;
SPACELEFT-1->SPACELEFT;
FMLA->L;
LOOPFLAT:
TL(L)->L;
IF L=NIL THEN SPACELEFT+1->SPACELEFT;
    IF RUNFLAT \(=\langle\) SPACELEFTTHEN AND RUNFLAT \(=<\) FORCEIN
        RUNFLAT->FLATSIZE;
        SPACELEFT-RUNFLAT \(\rightarrow\) REMAINDER;
    ELSE PPRPACK(): :NIL->STARTLIST;
        STARTLIST->ENDLIST;
        FALSE->FLATSIZE;
    close;
EXIT;
IF \(\operatorname{ATOM}(H D(L))\) THEN
    PPRDL(HD(L))->TEMP1; TEMP1+1+RUNFLAT->RUNFLAT;
```

 SPACELEFT-TEMP1->TEMP1;
 IF IL(L)=NIL THEN RPARCNT+RUNFLAT->RUNFLAT;
 TEMP1-RPARCNT->TEMP1;
 CLOSE;
 IF TEMP1<MINREM THEN TEMP1->MIVREY;CLOSE;
 GOTU LOOPFLAT;
 ELSE PPR1(HO(L_),IF TL(L)=VIL THEN RPARCNT+1;ELSE 1;CLOSE);
IF REMAINDEP<MINREM THEN REMAINDER->MINREM;CLOSE;
IF FLATSIZE THEN FLATSIZE+1+RUVFLAT->RJNFLAT;
GOTO LOOPFLAT;
Close;
CLOSE;
STARTLIST->RUNSTART;
ENDLIST->RUNEND;
LOOPINU:
「L(I_)->L;
IF I_=NIL THEN
PPRPACK()::RUNSTART->STARTLIST;
RUNENO->ENDLIST;
FALSE->FI_ATSIZE;
SPACELEFT+1->SPACELEFT;
EXIT;
IF ATOM(HD(L)) THEN SPACELEET-PPRDL(HD(L))->TEMP1;
IF TL(L) =NIL THEN TEMP1-RPARCNT->TEMP1;CLOSE;
IF IEMP1<MINREM THEN TEMP1->MINREM;CLOSE;
GOTO LOOPIND;
ClOSE;
PPRI(HU(L), IF TL(L)=NIL THEN RPARCNT+1;ELSE 1;CLOSE);
IF REMAINDER<MINREM THEN REMAINDER->MINREM;CLOSE;
IF FLATSIZE THEN
ELSE STARTLIST->TL(RUNEND);ENDLIST->RUNENO;
Cluse;
GOTO LUOPIND;
END;
FUNCTION PPRPACK;
LOGOR(LOGSHIFT(IF MINREM<DLHDFMLA THEN MIVREM+1;0->REMAINDER;
ADMLINES(LENGTH(FMLA)-1);
ELSE 17+DLHDFMLA; MINREM-DLHDFMLA-> REMAINDER;
ADDLINES(LENGTH(FMLA)-2);
(LOSE,13),NODENAME)
END;

```

FUNCTIUN PPR2 FMLA MARG1;
VARS NONLFLAG INDFLAG PROGFLAG;
IF ATOM(FMLA) THEN PPRATOM(FMLA);EXIT;
IF HD(FMLA) ="PROG" THEN MARG1; ELSE NIL;CLOSE->PROGFLAG;
IF gRECCNT=NEXTNODE THEN
LOGANI(NEXTIND,15) +MARG1->MARG1;
1->INDFLAG;
```

 LOGAND(NEXTIND,16)->NONLFLAG;
 TL(STARTLIST) ->STARTLIST;
 IF NIL = STARTLIST THEN
 FLSE LOGAND(HD(STARTLIST),2:11111111111111)->NEXTNODE;
 LOGSHIFT(HD(STARTLIST),-13)->NEXTIVD;
 CLOSE;
 ELSE 0->INDFLAG;1->NONLFLAG;
ClOSE;
GRECCNT+1->GRECCNT;
CUCHAROUT(59);
IF ATOM(HD(FMLA)) THEN
PPRATOM(HD(FMLA));
TL(FMLA) - >FMLA;
IF FMLA=NIL THEN CUCHAROUT(61); EXIT;
IF NONLFLAG THEN CUCHAROUT(16);
FLSE CUCHAROUT(17);PPRSP(MARG1);1->SUBSCRC(MARG1+1,PPRSTRIP);
CLOSE;
CLOSE;
LOOP:
IF NONLFLAG THEN ELSEIF TL(FMLA)=NIL THEN 0->SUBSCRC(MARG1+1,PPRSTRIP);CLOSE;
PPR?(HD(FMLA),MARG1);
「L(FMLA)->FMLA;
IF FMLA=NIL THEN CUCHAROUT(61);
EXIT;
IF INDFLAG THEN CUCHAROUT(17);
PPRSP(IF PROGFLAG/=NIL AND ATOM(HD(FMLA)) THEN PROGFLAG;
ElSE MARG1; ClOSE;);
ELSE CUCHAROUT(16);CLOSE;
GOTO LOOP;
END;

```

FUNCTIUN ADDLINES CNT;
CNT + PPRLINES \(\rightarrow\) PPPRLINFS;
IF PPRLINES \(>\) PPRMAX1 THEN PPRJUMP(); CLOSE:
END;
```

FUNCTION PPRIND FMLA MARG1 RPARCNT;
VARS X;
IF ATOM(FMLA)THEN PR(FMLA); EXIT;
IF HD(FMLA)="COND" THEN PPRMAXLNS ELSE 1000000;CLOSE
->PPRMAX1;
JUMPOUT(LAMBDA;PRSTRING('(TOO BIG)');END,0) - PPPRJUMP;
0->PPRLINES;
O->GRECCNT;
MARG2-MARG1->SPACELEFT;
PPR1(FNLA,RPARCNT+1);
IF FLATSIZE THEN PR(FMLA);EXIT;
FORALL X 1 1. 80; 0->SUBSCRC(X,PPRSTRIP);CLOSE;
LOGAND(HD(STARTLIST),2:11111111111111)->NEXTNODE;
LOGSHIFT(HD(STARTLIST),-13)->NEXTIND;

```
\(0->\) GRECCNT; PPR2(FMLA,MARG1);
END;
```

PPRIND(% 0, 0 %) ->PPR;

```
FUNCTION PPRDL L;
VARS CNT CUCHAROUT;
IF ISNUMBER(L) THEN \(-1->C V T\);
LAMBDA \(X\); CNT \(+1 \rightarrow\) CNT;END \(\rightarrow\) CUCHAROUT;
PR(L);
CNT;
ELSE DATALENGTH(L);CLOSE;
END;
FUNCTION PPRATOM L;
VARS CUCHAROUT OCUCHAROUT;
IF ISNUMBER(L) THEN
    CUCHAROUT \(->\) OCUCHAROUT;
    LAMBDA \(X\); IF \(X=16\) THEN ELSE OCUCHAROUT \((X)\);CLOSE;END
    \(->C U C H A R O U T ;\)
ELSEIF DATAWORD(L)="CSTRIP" THEN PRSTRING(L);
EXIT;
PR(L);
END;

FUNITIUN PPRSP \(N\);
\(0->\) PPRFLAG;
FORALL \(X 11 \mathrm{~N}\);
IF SUBSCRC (X,PPRSTRIP) AND NOT (PPRFLAG) THEN CUCHAROUT (PPRSPCHAR); 1->PPRFLAG;
ELSE CUCHAROUT (16) ; 0->PPRFLAG;
Close;
CLOSE;
END;
```

[/ IDENT] TRACK 9
CREATED 19.47 17 4 1973

```
[ 21.1814 SEPT 1973]

COMmENT " "IDENT" IS A FAIrly Importavt FUVCTION. IT MERELY RECOGNIZES WHEN TWO TERMS ARE IDENTICAL (AND THEREFORE EQUAL), WHEN THEY CANNOT POSSIBLY BE EOUAL (E.G., A CONS VERSUS A NIL), OR OF UNKNOWN RELATIONSHIP SyNTACTICALLy. It RETURNS 1 If they are IdENTICAL (IT KNOWS ABOUT INTEGERS bEING CONSES, ETC), 0 IF iHEy are of unknown relationship, and nil if they are definately UNEQUAL.';

VARS MEMBERID ASSOCID;
FUNCTION OCCUR CONST TERM;
IF IDENT(CONST,TERM) \(=1\) THEN 1;EXIT;
IF ATOM(TERM) THEN 0; EXIT;
LOOPIF (TL(TERM)->TERM; TERM /= NIL)
    THEN
    IF OCCUR(CONST,HD(TERM)) THEN 1; EXIT;
    CLOSE;
0 ;
END ;
FUNCTION OCCURCONS TERM1 TERM2;
IF SHD(TERM2) /= "CONS"
    THEN IDENT(TERM1,TERMZ) \(=1\)
ELSEIF OCCURCONS(TERM1,HD(TL(TERM2)))
    THEN 1;
    ELSE OCCURCONS(TERM1,HD(TL(TL(TERM2)))); CLOSE;
END ;

FUNETION IDENT TERM1 TERMC;
VARS FUNSYM;
TOF:
IF TERM1 = TERM2 THEN 1; EXIT;
IF ATOM(TERM1)
THEN
IF TERM1 \(=\) NIL THEN \(0 \rightarrow\) TERM1;
FLSEIF TERMI = "T" THEN 1 -> TERM1; CLOSE;
IF ATOM(TERMZ)
THEN
IF TERM2 = NIL THEN \(0 \rightarrow\) TERMZ;
ELSEIF TERM? = "T" THEN 1 -> TERM2; CLOSE;
IF EU(TERM1,TERM2) THEN 1;
E!SEIF ISNUMBER(TERM1)
「HEN IF ISNUMBER(TERM2)
THEN NIL;
ELSE O; CLOSE;
ELSE 0; CLOSE;
ELSEIF (L1: HD(TERM2) = "CONS")
THEN
IF TERM1
THEN
```

 IF ISNUMBER(TERM1)
 THEN
 IDENT(0,HD(TL(TERM2))) -> F001;
 IF EQ(F001,1)
 THEN
 TERM1 - 1 -> TERM1;
 HD(TL(TL(TERM2))) -> TERM2;
 GOTO TOP;
 ELSE F001; CLOSE;
 ELSEIF OCCURCONS(TERM1,TERM2) THEN NIL; ELSE 0; CLOSE;
 ELSE NIL; CLOSE;
 ELSE 0; CLOSE;
 ELSEIF ATOM(TERM2)
THEN
IF TERM2 = NIL THEN 0 - TERM2;
ELSEIF TERM2 = "T" THEN 1 -> TERM2; CLOSE;
SWAP;
GOTO L1;
ELSEIF HD(TERM1) = HD(TERM2)
THEN
HD(TERM1) -> FUNSYM;
1;
LOOPIF (TL(TERM1) -> TERM1; TERM1 /= NIL)
THEN
T!(TERM2) -> TERM2;
IOENT(HD(TERM1),HD(TERM2)) -> FOO1;
IF FO01 /= 1.
THEN
IF FUNSYM = "CONS"
THEN
IF F001 = NIL THEN ERASE(); NIL; EXIT;
LOGAND(FOO1);
ELSE ERASE(); 0; EXIT;
Close;
Ci_OSE;
ELSEIF HD(TERM2) = "CONS" OR HD(TERM1) = "CONS" AND (SWAP;1;)
THEN
IF OCCURCONS(TERM1,TERM2)
THEN NIL;
ELSE 0; CLOSE;
ELSE 0; CLOSE;
END:

```
COMMENT, THIS IS JUST AN EQUALITY LIKE OPERATION WHICH IS TRUE IF ITS
TWO ARGUMENTS ARE IDENT AND FALSE OTHERWISE.';
OPERATION \(7==\);
IDENT() = 1;
END;
GENASSUC \((\%\) NONOP \(==\%) \rightarrow\) ASSOCID;
GENMEM (\% NONOP \(==\%\) ) \(\rightarrow\) MEMBERID;
```

[ALAN] TRACK 9
CREATED 16.28 16 2 1973
DEFINE([SLESS [LAMBDA [X Y] [NOT [LTE Y X]]]]);
DEF[NE([SUC [LAMBDA [X] [CONS NIL X]]]);
DEFINE([PRE [LAMBDA [X] [COND X [CDR X] NIL]]]);
DEFINE([DIFF [LAMBDA [X Y] [CDRN Y X]]]);
DEFINE([EQN [LAMBDA [X Y] [EQUAL [LENGTH X] [LENGTH Y]]]]);
DTRACK(256);
INCHARITEM(DIN([DATA]))->DDF1;
POPVAL(FNTOLIST(LAMBDA;VARS X1;
DDF1()->X1;
1F X1 = "EQ" THEN "EQN";
ELSEIF X1 = "LESS" THEN "LTE";
LLSEIF X1 = "ADD" THEN "APPEND";
ELSEIF X1 = "IFF" THEN "EQUAL";
ELSEIF X1 = "FUNCTION" THEN "GOON";
tLSE X1; CLOSE;
END));
DTRACK(9);

```
```

