Mechanized Operational
Semantics

J Strother Moore
Department of Computer Sciences
University of Texas at Austin

Marktoberdorf Summer School 2008

(Lecture 5: Boyer-Moore Fast String Searching)

The Problem

One of the classic problems in computing is string
searching: find the first occurrence of one character
string (“the pattern”) in another (“the text").

Generally, the text is very large (e.g., gigabytes) but
the patterns are relatively small.

Examples

Find the word “comedy” In this NY Times article:

Fred Armisen’s office at “Saturday Night Live" is
deceptively small, barely big enough to fit a desk, a
couch, and an iPod. The glorified closet, the subject of a
running joke on the comedy show, now in its 31st season,

can simultaneously house a wisecracking ...

AAAAAAAAAAAAACAAAGACAGGGGCAACAAAGTGAGACCCTAAAAAAAAAAAAACCCCA
AAACGGAGAACTTGGAATCCTGTGTCCAAAAAAAAAAGCAGGAAGAGAGCGTGTAGAAAC
TGAAGCTGAAGTGGAAAAAAAAAAGTCGCCAGCACCTACTGTGGAGACCAGAAAGGAAAA
AAAAAATTGGCAGTCTCGTAGCATACCAAAACTAGGCTTGAAAAAAAAAACACACAAAAA
AACACAGGCTACCCAGTATTTTATCGTCCAAAAAAAAAGAGGGAAGAAGGACATTTATAT
TTGCCTTCTGCCAAAAAAAAAAGTACCTCCCGCCTAGAAGAGAGTTTAGAAATCACCAAA
AAAAAATAGAGAGTCCCAAAATGTTCGGAATACTCAGAAAAAAAAATCTTAGTCAGTGCT
CACTCAGAGGGACCGGGTATTTAAAAAAAACCTAGACCAGATGCAGCAGGTACAAATTAA
TCAATCCCAAAAAAAAGACCTTCTACCCTTCCAAAAAATGATAGTTGTCTGCAATCCAAA
AAAAAGACTCTCCGGAAGGTGGACATGCAGAACCTACCAAAAAAAAAGAGAAGAAAGAAT
TGCCGGGCAAAAAGTTCCACGTAAAAAAAAAAGGAAATGGGAATGGAGTGTTGTTCTCCT
TCCTACCTAGTTTTGAAAAAAAAGGATGGATGTGGGTCACCTGCTCACGTTCTCCAAAAA
AAAGTGGGTGCTCTCTCACAATATTCTTAGAGGTGGCAAAAAAAATAAAGTTGATGGAAA
CAGTACTGTGTGGGCCAAACAAAAAAAAAATGGCACCACCTTTTCATTGGCTGAAAAAAA
AATTCAACTGAAAAACACAAGTCATACCTTCCTGTTTTATTTGCAAAAAAAATTTTTCAA
ACCCCACGGCAACAAACGACAGTATCAAAAAAACAACTTCATTTGACATTCTGCTATATT
AATGCTCTATGTGGAAAAAAAAACCATCAAGTTGTGCCTTTTTTCAAAGAAATCCATGCA
AAAAAAAGACCCATGAAATAATTTTCTGGATCATCCATACAGAACCAAAAAAAAGAGGTG

COMEDY

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

JANNEEEEENNEEEEENED

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

CHENNNEEEEEEEENEEE

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

AE<ENNENEENNENEEEEE

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

ERERERNRRRERNC

O

M

E

D

Y

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

EEEEECEREEENNNNNEER

JOKE ON THE COMEDY

COMEDY

EEEEECEREEENNNNNEER

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

EEEEREEER-EENENEEEN

JOKE ON THE COMEDY

COMEDY

EEEEREEER-EENENEEEN

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

EEEENEEENEEEEEREREN

JOKE ON THE COMEDY

COMEDY

EEEENEEENEEEEEREREN

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

JOKE ON THE COMEDY

COMEDY

C

O

ME

D

Y

Key Property: The longer the pattern, the faster

the search!

Pre-Computing the Skip Distance

pat: 543210
COMEDY

txt: XXXXXOXXXXXXXXXXX. ..

I

A6 F 6 K 6
B 6 G 6 L 6
Cb H 6 M 3
D1 16 N 6
E 2 J 6 0 4

H U X O 'U
oy O O O O

N < X = < C
O O OO O Oy O

<space> 6

28

This is a 1-dimensional array, skipl[c], as big as
the alphabet.

29

COMEDY

JOKE ON THE COMEDY

skiplc]:
A6 F 6 K 6 P 6 U 6 <space> 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D1 I 6 N 6 S 6 X 6
E 2 J 6 0 4 T 6 Y O
Z 6

COMEDY

JOKE ON THE COMEDY

skiplc]:
A6 F 6 K 6 P 6 U 6 <space> 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D1 I 6 N 6 S 6 X 6
E 2 J 6 0 4 T 6 Y O
Z 6

COMEDY

EEEEECEREEENNNNNEER

JOKE ON THE COMEDY

skiplc]:
A6 F 6 K 6 P 6 U 6 <space> 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D1 I 6 N 6 S 6 X 6
E 2 J 6 0 4 T 6 Y O
Z 6

COMEDY

EEEEECEREEENNNNNEER

JOKE ON THE COMEDY

skiplc]:
A6 F 6 K 6 P 6 U 6 <space> 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D1 I 6 N 6 S 6 X 6
E 2 J 6 0 4 T 6 Y O
Z 6

COMEDY

JOKE ON THE COMEDY

skiplc]:
A6 F 6 K 6 P 6 U 6 <space> 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D1 I 6 N 6 S 6 X 6
E 2 J 6 0 4 T 6 Y O
Z 6

COMEDY

EEEEREEER-EENENEEEN

JOKE ON THE COMEDY

skiplc]:
A6 F 6 K 6 P 6 U 6 <space> 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D1 I 6 N 6 S 6 X 6
E 2 J 6 0 4 T 6 Y O
Z 6

COMEDY

EEEEREEER-EENENEEEN

JOKE ON THE COMEDY

skiplc]:
A6 F 6 K 6 P 6 U 6 <space> 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D1 I 6 N 6 S 6 X 6
E 2 J 6 0 4 T 6 Y O
Z 6

COMEDY

JOKE ON THE COMEDY

skiplc]:
A6 F 6 K 6 P 6 U 6 <space> 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D1 I 6 N 6 S 6 X 6
E 2 J 6 0 4 T 6 Y O
Z 6

COMEDY

EEEENEEENEEEEEREREN

JOKE ON THE COMEDY

skiplc]:
A6 F 6 K 6 P 6 U 6 <space> 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D1 I 6 N 6 S 6 X 6
E 2 J 6 0 4 T 6 Y O
Z 6

COMEDY

EEEENEEENEEEEEREREN

JOKE ON THE COMEDY

skiplc]:
A6 F 6 K 6 P 6 U 6 <space> 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D1 I 6 N 6 S 6 X 6
E 2 J 6 0 4 T 6 Y O
Z 6

COMEDY

JOKE ON THE COMEDY

skiplc]:
A6 F 6 K 6 P 6 U 6 <space> 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D1 I 6 N 6 S 6 X 6
E 2 J 6 0 4 T 6 Y O
Z 6

COMEDY

EEEEREEREERNCOMEDYHR

JOKE ON THE COMEDY

skiplc]:
A6 F 6 K 6 P 6 U 6 <space> 6
B 6 G 6 L 6 Q 6 V 6
C 5 H 6 M 3 R 6 W 6
D1 I 6 N 6 S 6 X 6
E 2 J 6 0 4 T 6 Y O
Z 6

But Wait! There’s More!

pat: NONPARTIPULAR
tXt: —————

42

But Wait! There’s More!

pat: NONPARTIPULA
txt: ———————————- R-—————————

43

But Wait! There’s More!

pat: NONPARTIPUL
txt: —————————- A

44

But Wait! There’s More!

pat: NONPARTIPUL
txt: —————————- P-———— ———————

45

But Wait! There’s More!

pat: NONPARTIPUL
txt: —————————- P-———— ———————

Slide 2 to match the discovered character.

46

But Wait! There’s More!

pat: NONPARTIPUL
txt: —————————- P-———— ———————

Slide 2 to match the discovered character.

47

But Wait! There’s More!

pat: NONPARTIPUL
txt: —————————- P??——————

48

But Wait! There’s More!

49

But Wait! There’s More!

pat: NONPARTIPULAR
tXt: —————

50

But Wait! There’s More!

pat: NONPARTIPULA
txt: —-———————————R————————. -

51

But Wait! There’s More!

pat: NONPARTIPUL
txt: -——=——————=—=)\R=—————— —- — -

52

But Wait! There’s More!

pat: NONPARTIPUL
txt: ————————- PA\R—-—————————

53

But Wait! There’s More!

pat: NONPARTIPUL
txt: ————————- P

54

But Wait! There’s More!

pat: NONPARTIPUL

Slide 7 to match the discovered substring!

55

But Wait! There’s More!

pat: NONPARTIPUL

Slide 7 to match the discovered substring!

There are only |a| X |pat| combinations, where ||
Is the alphabet size. We can still pre-compute the
skip distance.

56

The Delta Array

deltalc,j] is an array of size |a| X |pat| that gives
the skip distance when a mismatch occurs after
comparing ¢ from txt to pat[j].

57

The Algorithm

fast (pat, txt)

If pat = ""
then
If taxt = "
then return Not-Found;
else return 0; end;
end;

58

preprocess pat to produce delta;

j = |pat| —1;
1 = 7;

59

while (0 < 7 A @ < |txt])
do
If pat|j] = txt|i]

then

1 =1 — 1;

g=7—-1

else

i := 1+ deltaltxt[i], j];

j := |pat| —1;

end;

60

If (7 <0)
then return 2 + 1;
else return Not-Found; end;

end;

61

Performance

How does the algorithm perform?

n our test:
txt: English text of length 177,985.

pat: 100 randomly chosen patterns of length 5 —
30, chosen from another English text and filtered so
they do not occur in the search text.

62

Number of Characters Read from Text

45000

40000

35000

30000

25000

20000

15000

10000

Pattern Length vs. Number of Characters Read from Text

.....MMMMM

el =

© E

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Pattern Length

63

Naive algorithm would be a line at ~180,000 reads.

64

Length of Average Skip

16

14

12

10

Pattern Length vs. Length of Average Skip

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Pattern Length

th !
5 6 7 8 9

Goal

Prove the correctness of an M1 program for the
Boyer-Moore fast string searching algorithm.

We will not code the preprocessing in M1.

We will write code for the Boyer-Moore algorithm
that assumes that the contents of a certain local
contains a 2-dimensional delta array.

We will initialize the array variable with ACL2 code,
not M1 code.

66

We will proceed as previously advised:

e Step 1: prove that the code implements the
algorithm

e Step 2: prove that the algorithm implements the
spec

We'll do Step 2 first. It's always the hardest.

67

Demo 1

68

The Obviously Correct Algorithm

(defun correct-loop (pat txt i)
(cond ((>= i (length txt)) nil)
((matchp pat O txt i) i)
(t (correct-loop pat txt (+ 1 i)))))

(defun correct (pat txt)
(correct-loop pat txt 0))

(I omit type-like tests here.)

69

The Fast Algorithm

(defun fast-loop (pat j txt i)
(declare :measure (measure pat j txt i)
:well-founded-relation 1<))
(cond ...
((equal (char pat j) (char txt i))
(fast-loop pat (- j 1) txt (- i 1)))
(t (fast-loop pat
(- (length pat) 1)
TXT
(+ i (delta (char txt i)

j pat))))))

70

(defun fast (pat txt)
(if (equal pat "")
(if (equal txt "")
nil
0)

(fast-loop pat
(- (length pat) 1)
TXT
(- (length pat) 1))))

71

Step 2: Fast Algorithm is Correct

(defthm fast-is-correct
(implies (and (stringp pat)
(stringp txt))
(equal (fast pat txt)
(correct pat txt))))

72

Decomposition

(a) correct-loop can skip ahead if there are no
matches in the region skipped

(b) there are no matches in the region skipped by
the delta computation.

73

Summary of Step 2

A total of 9 definitions and lemmas are proved to
establish

(defthm fast-is-correct
(implies (and (stringp pat)
(stringp txt))
(equal (fast pat txt)
(correct pat txt))))

(On top of a library of useful utilities having
nothing to do with this problem.)

74

Step 1
(defconst *ml-boyer-moore-programx

; Allocation of locals

; pat 0
s] 1
; txt 2
;01 3
; pmax 4 = (length pat)
; tmax 5 = (length txt)
; array 6 = (preprocess pat)
; C 7 = temp - last char read from txt
’(
(load 0) ;0 (load pat)

(pUSh n ll) ; 1 (pUSh n Il)

75

(ifane 5)

(load
(push

2)
n Il)

(ifane 40)
(goto 43)

; loop:

(load
(iflt
(load
(load
(sub)
(ifle
(load
(load

1)
37)
5)
3)

37)
0)
1)

(aload)

(load
(load

2)
3)

(aload)
(store 7)

o O > W N

© 00 N

10

12
13
14
15
16
17
18
19

(ifane loop)

(load
(push

txt)
n ||)

(ifane win)

(goto

(load
(iflt
(load
(load
(sub)
(ifle
(load
(load

lose)

j)
win))
tmax)

i)

lose)
pat)
j)

(aload)

(load
(load

txt)
i)

(aload)
(store c)

76

(load 7)
(sub)
(ifne 10)
(load 1)
(push 1)
(sub)
(store 1)
(load 3)
(push 1)
(sub)
(store 3)
(goto -24)

; skip:

(load 3)
(load 6)
(load 7)
(aload)
(load 1)
(aload)

; 20
; 21
; 22
; 23
; 24
; 25
; 26
; 27
; 28
; 29
; 30
; 31

; 32
; 33
; 34
; 35
; 36
; 37

(load c)
(sub)

(ifne skip)
(load j)
(push 1)
(sub)
(store j)
(load i)
(push 1)
(sub)
(store 1)
(goto loop)

(load 1)
(load array)
(load c)
(aload)
(load j)
(aload)

77

(add)
(store 3)
(load 4)
(push 1)
(sub)
(store 1)
(goto -37)
; win:
(load 3)
(push 1)
(add)
(return)
; lose:
(push nil)
(return))

; 38
; 39
; 40
; 41
; 42
; 43
; 44

; 45
; 46
; 47
; 48

; 49
; 50

(add)
(store i)
(load pmax)
(push 1)
(sub)
(store j)
(goto loop)

(load i)
(push 1)
(add)

(return)

(push nil)
(return))

78

The Schedule

How do we define the schedule for such a
complicated piece of code?

79

The Schedule

(defun ml-boyer-moore-loop-sched (pat j txt i)
(cond
((< j 0) (repeat 0 6))
((<= (length txt) i) (repeat 0 8))
((equal (char-code (char pat j))
(char-code (char txt i)))
(append (repeat 0 25)
(ml-boyer-moore-loop-sched pat (- j 1)
txt (- 1 1))))
(t (append (repeat 0 29)
(m1-boyer-moore-loop-sched
pat (- (length pat) 1)
txt (+ i (delta (char txt i) j pat))))).

80

The Schedule

(defun ml-boyer-moore-loop-sched (pat j txt i)
(cond
((< j 0) (repeat 0 6))
((<= (length txt) i) (repeat 0 8))
((equal (char-code (char pat j))
(char-code (char txt i)))
(append (repeat 0 25)
(ml-boyer-moore-loop-sched pat (- j 1)
txt (- 1 1))))
(t (append (repeat 0 29)
(m1-boyer-moore-loop-sched
pat (- (length pat) 1)
txt (+ i (delta (char txt i) j pat))))).

81

(defun ml-boyer-moore-sched (pat txt)
(if (equal pat "")
(if (equal txt "")
(repeat 0 9)
(repeat 0 10))
(append (repeat 0 3)
(ml-boyer-moore-loop-sched
pat (- (length pat) 1)
txt (- (length pat) 1)))))

82

The Schedule

Defining the schedule is trivial if you have verified
the algorithm.

They have identical recursive structure and
justification.

83

(defthm ml-boyer-moore-is-fast
(implies
(and (stringp pat) (stringp txt))
(equal (top (stack
(run (ml-boyer-moore-sched pat txt)
(make-state O
(list pat (- (length pat) 1)
txt (- (length pat) 1)
(length pat) (length txt)
(preprocess pat)
0)
nil *ml-boyer-moore-programx))))
(fast pat txt))))

84

(defthm ml-boyer-moore-halts
(implies
(and (stringp pat) (stringp txt))
(haltedp
(run (ml-boyer-moore-sched pat txt)
(make-state O
(list pat (- (length pat) 1)
txt (- (length pat) 1)
(length pat) (length txt)
(preprocess pat)
0)
nil *ml-boyer-moore-programx)))))

85

Main Theorem
Given the two steps:

Step 1: The code computes the same thing as the
function fast

Step 2: The function fast computes the same as
correct

It Is trivial to show

86

(defthm ml-boyer-moore-is-correct
(implies
(and (stringp pat) (stringp txt))
(equal (top (stack
(run (ml-boyer-moore-sched pat txt)
(make-state O
(list pat (- (length pat) 1)
txt (- (length pat) 1)
(length pat) (length txt)
(preprocess pat)
0)
nil *ml-boyer-moore-programx))))
(correct pat txt))))

87

Conclusion

Mechanized operational (interpretive) semantics

e are entirely within a logical framework and so
permit logical analysis of programs by traditional
formal proofs, without introduction of
meta-logical transformers (VCGs)

e are generally executable
e are easily related to implementations

e allow derivation of language properties

88

e may allow derivation of intensional properties
(e.g., how many steps a program takes to
terminate)

e allow verification of system hierarchies (multiple
layers of abstraction can be formalized and
related within the proof system)

89

Thank You

90

