
CS378 - A Formal Model of the JVM

Lecture 3

http://www.cs.utexas.edu/users/moore/classes/cs378-jvm/

Semester Spring, 2012

Unique Id 53105

Intructor J Strother Moore

Email moore@cs.utexas.edu

Office MAI 2014

Office Hours MW 1:00–2:00

1



Represent Stacks

Pick a representation for stacks. Define

push so that (push i stk) pushes the

item i onto the stack represented by stk.

Define top to take a non-empty stack and

return the topmost item.

Define pop to take a non-empty stack and

return the stack obtained by removing the

topmost item.

2



Programming Note

The symbols push and pop are already

defined in the standard ACL2 symbol

package.

To define these functions in an ACL2

session we have to create a new package,

which we’ll call the “M1” package.

I’ll show you the incantation for that later.

3



Accessing List Elements

Define nth so that (nth i x) returns the

ith (0-based) element of list x. You may

assume x has at least i+1 elements.

4



Updating List Elements

Define update-nth so that

(update-nth i v x)

“changes” the list x so that the ith

(0-based) element is v. It leaves the other

elements unchanged. Actually, it returns a

new list; you can’t modify an object in

ACL2. You may assume x has at least i+1

elements.

5



States

A state contains a program counter, a list

of local variable values, a stack, and a

program.

Define make-state to take four objects

and return a state containing them.

Define pc, locals, stack, and program

to take a state and return the

corresponding part of it.

6



Instructions

An instruction contains an “op-code” and

0, 1, or 2 “operands.” Define op-code to

return the op-code of an instruction.

Define arg1 to return the first operand of

an instruction that has 1 or 2 operands.

Define arg2 to return the second operand

of an instruction that has 2 operands.

7



Next Instruction

A program is a list of instructions and a pc

is a natural number.

The “next instruction” of a state is the

instruction of the state’s program indicated

by the pc.

Define (next-inst s) to return the next

instruction of state s. You may assume the

concept is well-defined.

8



M1 Instruction Set

The M1 instructions are represented by

entries of the form shown below.
Operation short description

Format layout of opcode and args

Stack stack before ⇒ stack after

Description longer description

Stacks are displayed with the topmost item

on the right. Unless otherwise noted, the

program counter is always incremented by

one.

9



ILOAD

Operation push local n

Format (ILOAD n)

Stack . . . ⇒ . . . , v

Description The value v of local

variable n is pushed onto

the stack.

10



ICONST

Operation push constant

Format (ICONST c)

Stack . . . ⇒ . . . , c

Description The constant c is pushed

onto the stack.

11



IADD

Operation add two integers

Format (IADD)

Stack . . . , v1, v2 ⇒ . . . , r

Description Both v1 and v2 must be

integers. The values are

popped from the stack.

Their sum, r, is pushed

onto the stack.

12



ISUB

Operation subtract two integers

Format (ISUB)

Stack . . . , v1, v2 ⇒ . . . , r

Description Both v1 and v2 must be

integers. The values are

popped from the stack.

The result, r, is v1 − v2
and is pushed onto the

stack.

13



IMUL

Operation multiply two integers

Format (IMUL)

Stack . . . , v1, v2 ⇒ . . . , r

Description Both v1 and v2 must

be integers. The values

are popped from the

stack. Their product, r,

is pushed onto the stack.

14



ISTORE

Operation store into local n

Format (ISTORE n)

Stack . . . , v ⇒ . . .

Description The value, v, on top of

the stack is removed and

stored into local n.

15



GOTO

Operation jump by n

Format (GOTO n)

Stack . . . ⇒ . . .

Description Execution proceeds at

offset n from this

instruction, where n

may be positive or

negative. The target

address must be in the

current program.

16



IFEQ

Operation conditional jump by n

Format (IFEQ n)

Stack . . . , v ⇒ . . .

Description Execution proceeds at

offset n from this

instruction if v is 0 and

at the next instruction

otherwise. Pop the

stack.

17



The Single Step Function

Define step so that (step s) takes an

M1 state and executes the next instruction.

If the next instruction is not one of those

given above, halt the machine.

18



M1 Run

An M1 “schedule” is a list. (Eventually,

schedules will specify which thread is to

step next, but for now, only the length of

the schedule matters.)

Define run so that (run sched s) takes

a schedule (of length n) and a state s and

steps s n times.

19



Challenges

1. Build an M1 model yourself. The

relevant package declaration is shown

below.

2. Write an M1 program to compute

factorial.

3. Write an ACL2 expression that uses M1

to compute n! for any natural number n.

20



(defpkg "M1"

’(T NIL QUOTE IF EQUAL AND OR

NOT IMPLIES IFF CONS CAR CDR CONSP ENDP

LIST LIST* ATOM SYMBOLP + - * / EXPT

FLOOR MOD NATP INTEGERP NFIX ZP < <=

> >= LET LET* COND CASE OTHERWISE DEFUN

DEFTHM THM DEFCONST DEFMACRO PROGN &REST

MUTUAL-RECURSION IN-PACKAGE DECLARE

IGNORE XARGS IN-THEORY ENABLE DISABLE

E/D INCLUDE-BOOK LD I-AM-HERE PBT PCB

PCB! PE PE! PF PL PR PR! PUFF U UBT UBT!

O-P O< ACL2-COUNT INTERN-IN-PACKAGE-OF-SYMBOL

COERCE SYMBOL-NAME STRING CONCATENATE

STRIP-CARS ASSOC PAIRLIS$ PAIRLIS-X2

SYNTAXP QUOTEP))

(in-package "M1")

21



(defpkg "M1"

’(T NIL QUOTE IF EQUAL AND OR

NOT IMPLIES IFF CONS CAR CDR CONSP ENDP

LIST LIST* ATOM SYMBOLP + - * / EXPT

FLOOR MOD NATP INTEGERP NFIX ZP < <=

> >= LET LET* COND CASE OTHERWISE DEFUN

DEFTHM THM DEFCONST DEFMACRO PROGN &REST

MUTUAL-RECURSION IN-PACKAGE DECLARE

IGNORE XARGS IN-THEORY ENABLE DISABLE

E/D INCLUDE-BOOK LD I-AM-HERE PBT PCB

PCB! PE PE! PF PL PR PR! PUFF U UBT UBT!

O-P O< ACL2-COUNT INTERN-IN-PACKAGE-OF-SYMBOL

COERCE SYMBOL-NAME STRING CONCATENATE

STRIP-CARS ASSOC PAIRLIS$ PAIRLIS-X2

SYNTAXP QUOTEP))

(in-package "M1")

Note that PUSH (i.e., M1::PUSH) is

undefined in this package!

22



(defpkg "M1"

’(T NIL QUOTE IF EQUAL AND OR

NOT IMPLIES IFF CONS CAR CDR CONSP ENDP

LIST LIST* ATOM SYMBOLP + - * / EXPT

FLOOR MOD NATP INTEGERP NFIX ZP < <=

> >= LET LET* COND CASE OTHERWISE DEFUN

DEFTHM THM DEFCONST DEFMACRO PROGN &REST

MUTUAL-RECURSION IN-PACKAGE DECLARE

IGNORE XARGS IN-THEORY ENABLE DISABLE

E/D INCLUDE-BOOK LD I-AM-HERE PBT PCB

PCB! PE PE! PF PL PR PR! PUFF U UBT UBT!

O-P O< ACL2-COUNT INTERN-IN-PACKAGE-OF-SYMBOL

COERCE SYMBOL-NAME STRING CONCATENATE

STRIP-CARS ASSOC PAIRLIS$ PAIRLIS-X2

SYNTAXP QUOTEP))

(in-package "M1")

The only ACL2 functions you can use are

those listed above!

23


